
M A N N I N G

Konstantinos Kapelonis
FOREWORD BY Luke Daley

Java Testing with Spock
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

ii
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

Java Testing with
Spock

KONSTANTINOS KAPELONIS

M A N N I N G
SHELTER ISLAND
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

iv
For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2016 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without elemental chlorine.

Manning Publications Co. Development editors: Susan Conant
20 Baldwin Road Dan Maharry
PO Box 761 Technical development editor: Keith Conant
Shelter Island, NY 11964 Copyeditor: Sharon Wilkey

Proofreaders: Melody Dolab
Toma Mulligan

Technical proofreader: Francesco Bianchi
Typesetter: Marija Tudor

Cover designer: Marija Tudor

ISBN: 9781617292538
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 21 20 19 18 17 16
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

www.manning.com

 To Maria, for enduring my endless writing sessions

Licensed to Stephanie Bernal <nordicka.n@gmail.com>

Licensed to Stephanie Bernal <nordicka.n@gmail.com>

brief contents
PART 1 FOUNDATIONS AND BRIEF TOUR OF SPOCK 1

1 ■ Introducing the Spock testing framework 3
2 ■ Groovy knowledge for Spock testing 31
3 ■ A tour of Spock functionality 62

PART 2 STRUCTURING SPOCK TESTS 89

4 ■ Writing unit tests with Spock 91
5 ■ Parameterized tests 127
6 ■ Mocking and stubbing 157

PART 3 SPOCK IN THE ENTERPRISE 191

7 ■ Integration and functional testing with Spock 193
8 ■ Spock features for enterprise testing 224

vii

Licensed to Stephanie Bernal <nordicka.n@gmail.com>

BRIEF CONTENTSviii
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

contents
foreword xv
preface xvii
acknowledgments xix
about this book xxi
about the cover illustration xxiv

PART 1 FOUNDATIONS AND BRIEF TOUR OF SPOCK 1

1 Introducing the Spock testing framework 3
1.1 What is Spock? 4

Mocking and stubbing 5 ■ Behavior-driven development 5
Spock’s design features 5 ■ Spock’s coding features 6

1.2 The need for a testing framework 8
Spock as an enterprise-ready test framework 9 ■ Common ways
to handle enterprise complexity 13

1.3 Spock: the groovier testing framework 15
Asserts vs. Assertions 15 ■ Agnostic testing of Java and
Groovy 15 ■ Taking advantage of Groovy tricks in Spock tests 16

1.4 Getting an overview of Spock’s main features 16
Enterprise testing 17 ■ Data-driven tests 17
Mocking and stubbing 17
ix

Licensed to Stephanie Bernal <nordicka.n@gmail.com>

CONTENTSx
1.5 A first look at Spock in action 18
A simple test with JUnit 18 ■ A simple test with Spock 19
 Inspecting failed tests with Spock 20

1.6 Spock’s position in the Java ecosystem 23
Making Spock Groovy 24 ■ Adding Spock tests to existing
projects that have JUnit tests 25 ■ Spock adoption path in a
Java project 26

1.7 Comparing Spock and JUnit 27
Writing concise code with Groovy syntax 27 ■ Mocking and
stubbing with no external library 27 ■ Using English sentences
in Spock tests and reports 28

1.8 Summary 30

2 Groovy knowledge for Spock testing 31
2.1 What you need to know about Groovy 32

Groovy as a companion to Java 34 ■ Accessing Java classes in
a Groovy script 37 ■ Declaring variables and methods in
Groovy 38 ■ Writing less code with Groovy 40

2.2 Groovy Power assert as a replacement for JUnit asserts 41
Understanding how Groovy handles asserts 41 ■ Using Groovy
assertions in Spock tests 44

2.3 Groovy features useful to Spock tests 46
Using map-based constructors 46 ■ Using maps and lists in
Groovy 47 ■ Interpolating text with Groovy strings 50

2.4 Reading a test dataset from an external source 51
Reading a text file 51 ■ Reading an XML file 52
Reading a JSON file 53

2.5 Advanced Groovy features useful to testing 54
Using Groovy closures 55 ■ Creating test input with
ObjectGraphBuilders 56 ■ Creating test input with
Expando 58

2.6 Summary 61

3 A tour of Spock functionality 62
3.1 Introducing the behavior-testing paradigm 63

The setup-stimulate-assert structure of JUnit 65 ■ The given-
when-then flow of Spock 67
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

CONTENTS xi
3.2 Handling tests with multiple input sets 70
Existing approaches to multiple test-input parameters 72
Tabular data input with Spock 74

3.3 Isolating the class under test 76
The case of mocking/stubbing 76 ■ Stubbing fake objects with
Spock 79 ■ Mocking collaborators 80 ■ Examining
interactions of mocked objects 83 ■ Combining mocks and stubs
in parameterized tests 86

3.4 Summary 87

PART 2 STRUCTURING SPOCK TESTS 89

4 Writing unit tests with Spock 91
4.1 Understanding Spock from the ground up 91

A simple test scenario 92 ■ The given: block 94 ■ The setup:
block 95 ■ The when: block 96 ■ The then: block 98
The and: block 99 ■ The expect: block 103 ■ The cleanup:
block 104

4.2 Converting requirements to Spock tests 105
Explaining the feature examined in a Spock test 105
Marking the class under test inside a Spock test 106
Describing the Spock unit test as a whole 107
Revising our view of a Spock test 108

4.3 Exploring the lifecycle of a Spock test 109
Setup and cleanup of a feature 109 ■ Setup and cleanup of a
specification 110 ■ Long-lived objects with the @Shared
annotation 112 ■ Use of the old() method 113

4.4 Writing readable Spock tests 115
Structuring Spock tests 115 ■ Ensuring that Spock tests are
self-documenting 116 ■ Modifying failure output 117
Using Hamcrest matchers 119 ■ Grouping test code
further 122

4.5 Summary 125

5 Parameterized tests 127
5.1 Detecting the need for parameterized tests 128

What are parameterized tests? 130
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

CONTENTSxii
5.2 Using the where: block 131
Using data tables in the where: block 133 ■ Understanding
limitations of data tables 134 ■ Performing easy maintenance
of data tables 135 ■ Exploring the lifecycle of the where:
block 137 ■ Using the @Unroll annotation for reporting
individual test runs 139 ■ Documenting parameterized
tests 141 ■ Using expressions and statements in data tables 143

5.3 Using data pipes for calculating input/output
parameters 144
Dynamically generated parameters 145 ■ Parameters that stay
constant 147 ■ Parameters that depend on other
parameters 147

5.4 Using dedicated data generators 148
Writing a custom data generator 150 ■ Using multivalued
data iterators 152

5.5 Working with third-party data generators 155

5.6 Summary 156

6 Mocking and stubbing 157
6.1 Using fake collaborators 158

Using fake collaborators to isolate a class in unit tests 158
Faking classes in Spock: mocks and stubs 159 ■ Knowing when
to use mocks and stubs 160 ■ Exploring a sample application
for an electronic shop system 161

6.2 Controlling input to the class under test with stubs 163
Basic stubbing of return values 163 ■ Matching arguments
leniently when a stubbed method is called 166 ■ Using sequential
stubs with different responses for each method call 167 ■ Throwing
exceptions when a stubbed method is called 168 ■ Using dynamic
stubs that check arguments when responding 169 ■ Returning
stubs from the responses of other stubs 172

6.3 Mocks: verifying values returned from the class under test 173
All capabilities of stubs exist in mocks as well 174 ■ Simple
mocking—examining whether a method was called 174
Verifying order of interactions 176 ■ Verifying number of
method calls of the mocked class 177 ■ Verifying
noninteractions for multiple mocked classes 179 ■ Verifying
types of arguments when a mocked method is called 181
Verifying arguments of method calls from mocked classes 182

6.4 Putting it all together: credit card charging in two steps 184
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

CONTENTS xiii
6.5 Architecture considerations for effective mocking/
stubbing 188
Designing testable code that allows painless mocking 188
Understanding lenient vs. strict mocks 188

6.6 Summary 189

PART 3 SPOCK IN THE ENTERPRISE 191

7 Integration and functional testing with Spock 193
7.1 Unit tests vs. integration tests vs. functional tests 194

Characteristics of the test categories 195 ■ The testing
pyramid 197 ■ Spock support for integration and functional
testing 198 ■ Source code organization of the examples 199

7.2 Integration testing with Spock 199
Testing a Spring application 199 ■ Narrowing down the
Spring context inside Spock tests 202 ■ Directly accessing the
database with Groovy SQL 204 ■ Integration testing with other
containers (Java EE and Guice) 206

7.3 Functional testing of REST services with Spock 207
Working with a simple REST service 207 ■ Testing REST
services by using Java libraries 208 ■ Using the @Stepwise
annotation to run tests in order 209 ■ Testing REST services
using Groovy RESTClient 211

7.4 Functional testing of web applications with Spock 212
Browser automation with Geb 212 ■ The example web
application 213 ■ Spock and Geb: a match made in
heaven 214 ■ Using Geb to interact with a web page 216

7.5 Running Spock tests as part of a build process 218
Splitting unit, integration, and functional tests 218
Getting code coverage from Spock tests 221

7.6 Summary 222

8 Spock features for enterprise testing 224
8.1 Using additional Spock features for enterprise tests 225

Testing the (non)existence of exceptions: thrown() and
notThrown() 225 ■ Mapping Spock tests to your issue-tracking
system: @Issue 227 ■ Failing tests that don’t finish on time:
@Timeout 228 ■ Ignoring certain Spock tests 230
Automatic cleaning of resources: @AutoCleanup 234
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

CONTENTSxiv
8.2 Handling large Spock tests 235
Using helper methods to improve code readability 236
Reusing assertions in the then: block 239 ■ Reusing
interactions in the then: block 243

8.3 Creating partial mocks with spies 245
A sample application with special requirements 245 ■ Spies
with Spock 247 ■ The need for spies shows a problematic code
base 248 ■ Replacement of spies with mock 248

8.4 Summary 250

appendix A Installing Spock 251
appendix B External Spock extensions and related tools 263

index 275
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

foreword
I've been fortunate enough to have used Spock for the majority of my career as a JVM
developer. It’s now an implied and inseparable part of my process for making soft-
ware. By talking to developers around the world at conferences and on mailing lists
and the like, I know I am not alone in this regard.

 My journey with Spock started shortly after I was thrust onto the JVM, coming from
a Perl and Ruby background. “Big E” Enterprise Java held no allure for me, and I was
desperate to find tools that would allow me to maintain the nimble and empowering
spirit of the tools that I was used to. In Spock I found a tool that far outshined any-
thing that I had previously come across.

 My own formative ideas at the time about testing were elegantly expressed in a supe-
rior manner in Spock, by its founder Peter Niederwieser. I then supported Peter in
Spock’s development and helped spread the word of what testing can, and should, be.

 Spock’s key tenet is that you don’t write tests for yourself; you write them for the
future you—or for the future developer who will work with the test next. So this is
about more than just readability.

 Readability as the primary goal takes you down a road of expressing tests in a con-
torted “natural” language and using barbaric regular expressions based on token
extractions in order to turn it into something executable. Here, I'm referring to the
testing tool “Cucumber” and its imitators. Such tools are perfectly fine and justified in
certain contexts, but these aren’t the contexts I find myself working in, at least not
most of the time. The tests that I write are for myself and other software developers;
we know how to communicate in code. What's more, we have techniques, tools and
traditions for crafting and evolving this communication.
xv

Licensed to Stephanie Bernal <nordicka.n@gmail.com>

FOREWORDxvi
 Spock gives us the platform we need for writing highly expressive and intention-
revealing tests in code, and embracing these techniques, tools, and traditions. The effi-
ciency of authoring and evolving tests is just as important as readability, and this
doesn't necessarily come for free with “readable” tests.

 This book is an important resource for anyone wanting to test better, particularly
those coming from a strong Java background (though there’s also plenty for long-time
Spock aficionados). Using Spock to test a Java codebase is a no-brainer. Spock tests are
written in Groovy, which seamlessly interoperates with Java. When used in this con-
text, it can be thought of as a more pragmatic version of Java that offers many conve-
niences that are particularly appealing at test time. Spock also makes strategic use of
its reduced syntax, type-flexibility, and advanced features such as compile time trans-
forms to be more convenient and expressive than what is possible with Java.

 Konstantinos has done a great job of clearly articulating the value proposition in
using Spock, in particular for Java developers. The book goes beyond a mere explora-
tion of Spock’s API and feature set to include general testing practices and real-world
application. Even if for some bizarre reason you aren't as thrilled as I am about writing
Spock tests by the end of the book, you'll still come out a better tester.

LUKE DALEY

SPOCK FOUNDING CONTRIBUTOR
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

preface
The first time Spock came onto my programming radar (which is always on, looking
for interesting news in the Java ecosystem) I have to admit it didn’t get the attention it
deserved. I briefly read its web page and originally thought that it was the equivalent
of JUnit but for the Groovy programming language instead of Java. Since I mainly
write Java code professionally, a Groovy testing framework wasn’t of much interest to
me at that time. I moved along to the next news item of my RSS reader. Big mistake!

 Groovy was already very high up on my list of “things that I needed to evaluate”
and I kept researching it. I was especially interested in how it connects to Java and the
ways it augments your existing Java code base. I learned that Groovy code compiles to
the same bytecode as Java, that it also runs on the JVM, and that adding Groovy to a
Java code base is as simple as adding the Groovy jar in the Java classpath.

 Then it dawned on me: if Java and Groovy code are so close together, can I use
Spock (which is the Groovy testing tool) to test Java code? And could I use JUnit to test
Groovy code? Coming from a programming background with big Java codebases, I
was of course very interested in the first question.

 I searched the internet for answers, and all the articles I found (at the time) only
explained how to test Groovy code with Spock, but not Java. So I started experiment-
ing with Spock to find the answer to my question. This led me to discover the expres-
sive syntax of Spock—the ability to use full sentences for method names, its clear
structuring of tests, its built-in support for mocks, and all the other goodies that you
will discover in this book.

 Spock combines such killer features as context-aware error reporting with back-
ward compatibility for existing JUnit tools, making its adoption almost effortless. If
xvii

Licensed to Stephanie Bernal <nordicka.n@gmail.com>

PREFACExviii
you thought that your unit tests were complex and cumbersome, then Spock will help
you rediscover the joys of unit testing! Welcome to the world of Spock and accompany
us on our journey through this book to learn more about its awesomeness!
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

acknowledgments
Writing a book is a collective effort. In the world of programming, where technologies
come and go at a frenetic pace, it would be unrealistic to expect to write a book with-
out a lot of external help, as this would make the book obsolete the moment it was
published.

 First, I would like to thank my development editors at Manning, Susan Conant and
Dan Maharry. They taught me how to write a book and to develop content that is tech-
nically sound but also interesting and entertaining to the reader. They are the two
people who spent a lot of time with me, explaining what it takes to write a good book
and guiding me from the first draft until the final printed book.

 Creating a book entails a lot of tasks other than writing the body of the text.
Thankfully, I didn’t have to concern myself with most of these tasks because a huge
army of Manning personnel was there for me. I owe a lot to Kevin Sullivan, Mary Pier-
gies, Janet Vail, Candace Gillhoolley, Aleksandar Dragosavljevic, Keith Conant, Fran-
cesco Bianchi, Sharon Wilkey, Melody Dolab, Toma Mulligan, and Gordan Salinovic
for allowing me to focus on writing while they took care of layout, graphics, technical
reviewing, proofreading, and marketing.

 The following reviewers read the manuscript at various stages of its development
and provided invaluable feedback: Adam Wynne, Annyce Davis, Chris Davis, David
Pardo, Helen Scott, Laurence Giglio, Mario-Leander Reimer, Michael Bateman,
Mikael Dautrey, Paul Grebenc, Robert Kietly, Ronald Tischliar, Steve Rogers, William
Wheeler, and Zorodzayi Mukuya. Thanks also to all the MEAP readers who posted
comments and corrections in the Author Online forum.
xix

Licensed to Stephanie Bernal <nordicka.n@gmail.com>

ACKNOWLEDGMENTSxx
 This book is the result of a direct collision of two equally important events. The
first was the fact that Zeroturnaround allowed me to write a blog post on Spock back
in 2013. I thank them because they gave me complete freedom on what to write about,
even though Spock was not directly related to their business. The second event was
that Michael Stephens of Manning noticed this Spock article and proposed to make a
full book out of it. I thank him because he believed in me, even though I had never
written a book before in my life.

 I am grateful to my colleagues Ioannis Cherouvim, Alex Papadakis, and Zisis Ponti-
kas for reviewing early drafts of the manuscript. Their comments were crucial as they
were my first real readers. And special thanks go to Luke Daley who graciously offered
to write the forward to my book.

 Last, but not least, I would like to thank Peter Niederwieser for creating Spock in
the first place! I believe that Spock has a bright future and that this book will help to
strengthen its position in the Java ecosystem.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>

about this book
The central topic of this book is, of course, the Spock testing framework. A secondary
theme is the employment of proven test practices and the ability to test all aspects of a
Java application. Even though this book is introductory as far as Spock is concerned,
there are certain assumptions I have made while writing it. When I think about my
ideal reader, I assume that you are a seasoned Java developer. By seasoned I mean that
you know your way around Java code and have mastered the basics: you have written
JUnit tests and understand their purpose and use, and you want to learn new things
and improve your craft.

 If you do not fit this description, then there are several books available both for
Java and testing in general that you need to read first. Especially for testing I can rec-
ommend JUnit in Action, Second Edition by Petar Tahchiev, et al. (Manning 2010),
Effective Unit Testing by Lasse Koskela (Manning 2013), and BDD in Action by John Fer-
guson Smart (Manning 2014).

 You may have also used Mockito or a similar framework for your unit tests. While
this knowledge is helpful, it is not strictly required to take full advantage of this book
as I do introduce these concepts (mocks/stubs/spies) and explain how Spock imple-
ments them.

 Finally, I do not assume that you know Groovy. This is an important driving factor
for the organization of the book—a Spock book for Groovy developers would be very
different. I will introduce important Groovy traits as needed, but only those that are
relevant to Spock testing.

 If you are interested in Groovy (the programming language itself), a good place to
start would be Groovy in Action, Second Edition by Dierk Koenig, et al. (Manning 2015).
xxi

Licensed to Stephanie Bernal <nordicka.n@gmail.com>

ABOUT THIS BOOKxxii
Roadmap

There are eight chapters and two appendixes in this book.
 Chapter 1 starts with a description of testing frameworks in general. We look at the

objectives of Spock, its major features against the competition both in theory and with
code examples. We also look at the relation of Java and Groovy and how you can grad-
ually adopt Spock in an existing Java project.

 Chapter 2 is devoted to teaching Groovy to Java developers. Because Spock tests
are written in Groovy it is essential to learn the Groovy basics. Groovy is a full pro-
gramming language on its own, but this chapter only focuses on knowledge needed
for Spock tests. We see how compact and concise Groovy code can be (compared to
Java) and how Groovy handles assert statements. Finally we look at some common
Groovy utilities that may prove useful in unit tests

 Chapter 3 is a tour of the major Spock features. We will see the basic structure of
Spock unit tests, how Spock revolutionizes the way parameterized tests are handled,
and some brief use of mocking/stubbing. A series of almost-real-world examples is
used that will hopefully be different from examples you have seen in other tutorials.

 Chapter 4 is probably the most important chapter in the book. It contains a
detailed explanation of all Spock building blocks and how they can be connected
together to create an expressive unit test. We also look at setup and cleanup methods
for Spock tests along with some useful annotations that can be used for extra docu-
mentation of a unit test.

 Chapter 5 explains parameterized tests. One of the great strengths of Spock is its
expressive syntax with regard to parameterized tests. Input and output parameters can
be described in a tabular format, making the syntax of parameterized tests much
more pleasant. Spock also supports custom data readers that can be used for even
more control of the parameters passed to a unit test.

 Chapter 6 is all about mocking stubbing. Spock comes supercharged with a mocking
facility allowing you to examine production code in a completely controlled environ-
ment. We start with some basic example of stubs, move on to mocks, and also talk about
some advanced cases of mocking. If you have never used mocking before, this chapter
also contains a bit of theory on what mocks are and where you should use them.

 Chapter 7 examines integration and functional tests with Spock. The running
theme here is that you can mostly reuse all your Java techniques and libraries that you
already have in your JUnit tests. It is impossible to cover all frameworks, and therefore
most examples are centered around the popular Spring library. We will cover func-
tional testing of web pages and REST services in this chapter as well.

 Chapter 8 is the final chapter, and it explains some extra features of Spock useful
to enterprise applications. You will learn about refactoring large tests, using documen-
tation annotations, and automatically ignoring tests using smart conditions. The chap-
ter closes with a lesson on Spock spies, both in theory and practice.

 Finally the appendixes explain how to install Spock and describe Spock extensions
and tools.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

ABOUT THIS BOOK xxiii
Code conventions and downloads

The code in the book is presented in a fixed-width font like this to separate it
from ordinary text. Code annotations accompany many of the listings, highlighting
important concepts. In some cases, numbered bullets link to explanations that follow
the listing.

 The source code for the examples in the book is available from GitHub at http://
github.com/kkapelon/java-testing-with-spock. All listings in the book are inside the
Git repository and include extra bonus listings as well as solutions to exercises men-
tioned in the book. For brevity’s sake, the text will at times point you to the full source
code in GitHub, as it would have been impractical to include the entire source code in
the body of the book. To implement the code, you will only need Java and the Maven
build tool. Specific instructions on how to run the code and how to include Spock in
your own applications are included in appendix A.

 The code is open to anyone who would like to add contributions—if you have a
suggestion on how to improve the code, you can open an issue or create a pull request
via the web interface of GitHub. We look forward to your suggestions!

Author online

Purchase of Java Testing with Spock includes free access to a private web forum run by
Manning Publications where you can make comments about the book, ask technical
questions, and receive help from the author and from other users. To access the forum
and subscribe to it, point your web browser to www.manning.com/books/java-testing-
with-spock. This page provides information on how to get on the forum once you are
registered, what kind of help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialog between individual readers and between readers and the author can take place.
It is not a commitment to any specific amount of participation on the part of the
author, whose contribution to the AO remains voluntary (and unpaid). We suggest
you try asking the author some challenging questions lest his interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s web site as long as the book is in print.

About the author

Konstantinos Kapelonis is a software engineer with more than 10 years of program-
ming experience ranging from writing bare metal C for the PlayStation 3 to Scheme
code that mimics human reasoning. He works daily with Java and has a soft spot for
code quality and build pipelines.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

http://www.manning.com/books/java-testing-with-spock
http://www.manning.com/books/java-testing-with-spock
http://github.com/kkapelon/java-testing-with-spock
http://github.com/kkapelon/java-testing-with-spock

about the cover illustration
The figure on the cover of Java Testing with Spock is captioned “Habit of an Ambian Arab
in 1581.” The illustration is taken from Thomas Jefferys’ A Collection of the Dresses of Dif-
ferent Nations, Ancient and Modern (four volumes), London, published between 1757 and
1772. The title page states that these are hand-colored copperplate engravings, height-
ened with gum arabic. Thomas Jefferys (1719–1771) was called “Geographer to King
George III.” He was an English cartographer who was the leading map supplier of his
day. He engraved and printed maps for government and other official bodies and pro-
duced a wide range of commercial maps and atlases, especially of North America. His
work as a map maker sparked an interest in local dress customs of the lands he surveyed
and mapped, which are brilliantly displayed in this collection.

 Fascination with faraway lands and travel for pleasure were relatively new phenom-
ena in the late 18th century and collections such as this one were popular, introducing
both the tourist as well as the armchair traveler to the inhabitants of other countries.
The diversity of the drawings in Jefferys’ volumes speaks vividly of the uniqueness and
individuality of the world’s nations some 200 years ago. Dress codes have changed since
then and the diversity by region and country, so rich at the time, has faded away. It is
now often hard to tell the inhabitant of one continent from another. Perhaps, trying to
view it optimistically, we have traded a cultural and visual diversity for a more varied per-
sonal life. Or a more varied and interesting intellectual and technical life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Jeffreys’ pictures.
xxiv

Licensed to Stephanie Bernal <nordicka.n@gmail.com>

Part 1

Foundations and
brief tour of Spock

Spock is a test framework that uses the Groovy programming language. The
first part of the book expands on this by making sure that we (you, the reader,
and me, the author) are on the same page.

 To make sure that we are on the same page in the most gradual way, I first
define a testing framework (and why it’s needed) and introduce a subset of the
Groovy syntax needed for writing Spock unit tests. I know that you’re eager to
see Spock tests (and write your own), but some features of Spock will impress
you only if you’ve first learned a bit about the goals of a test framework and the
shortcomings of current test frameworks (for example, JUnit).

 Don’t think, however, that this part of the book is theory only. Even at this
early stage, this brief tour of Spock highlights includes full code listings and
some out-of-the-ordinary examples.

 Chapter 1 is a bird’s-eye view of Spock, explaining its position in the Java eco-
system, the roles it plays in the testing process, and a brief comparison with
JUnit. Feel free to skip this chapter if you’re a seasoned Java developer and have
already written a lot of JUnit tests.

 Chapter 2 is a crash course in the Groovy programming language for Java
developers. I promised that I don’t assume any Groovy knowledge on your part,
and this chapter keeps that promise. In it, I specifically focus only on Groovy fea-
tures that are useful to Spock tests. By the end of this chapter, you’ll be fully
primed for reading and writing the Spock Groovy syntax. If you’re interested in
learning the whole Groovy package (for writing production code and not just
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

2 CHAPTER Foundations and brief tour of Spock
unit tests), you can think of this chapter as a stepping stone to full Groovy nirvana. If
you already know your way around Groovy code (and are familiar with closures and
expandos), you can safely skip this chapter.

 Chapter 3 demonstrates the three major facets of Spock (core testing, parameter-
ized tests, and mocking/stubbing). These are presented via a series of testing scenar-
ios for which the Java production code is already available and you’re tasked with the
unit tests. All the examples present that same functionality in both Spock and JUnit/
Mockito so that you can draw your own conclusions on the readability and clarity of
the test code. Chapter 3 acts as a hub for the rest of the book, as you can see which
facet of Spock interests you for your own application.

 Let’s start your Spock journey together!
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

Introducing the Spock
testing framework
We live in the computer revolution. We’ve reached the point where computers are
so commonplace that most of us carry a pocket-sized one all the time: a mobile
phone. Mobile phones can now perform real-time face recognition, something
that used to require a mainframe or computer cluster. At the same time, access to
cheap and “always-on” internet services has created a communication layer that
surrounds us.

 As we enjoy the benefits of computerized services in our daily lives, our expecta-
tions are also changing. We expect information to be always available. Errors and
unexpected behavior in a favorite software service leave us frustrated. E-commerce
is on the rise, and all brands fight for customer loyalty as we turn to the internet for
our shopping needs. Once I ordered a single chair from a well-known furniture

This chapter covers
■ Introducing Spock
■ Bird’s-eye view of the testing process
■ Using Groovy to test Java
■ Understanding Spock’s place in the testing

world
3

Licensed to Stephanie Bernal <nordicka.n@gmail.com>

4 CHAPTER 1 Introducing the Spock testing framework
company, and my credit card was charged three times the amount shown on the prod-
uct page because of a computer error. Naturally, I never bought anything from that
online shop again.

 These high expectations of error-free software create even more pressure on devel-
opers if the “user” of the software is an organization, another company, or even a gov-
ernment agency. Software errors can result in loss of time/money/brand loyalty and,
more important, loss of trust in the software.

 If you’re a software developer at any level, you know that writing programming
code is only half of software creation. Testing the programming code is also essential
in order to verify its correctness. Software problems (more commonly known as bugs)
have a detrimental effect on the reliability of an application. A continuous goal of soft-
ware development is the detection of bugs before the software is shipped or deployed
to production.

 A bug/issue that reaches production code can have a profound effect, depending
on the type of software. For example, if your software is a mobile application for track-
ing daily intake of calories, you can sleep easily each night knowing that any issues
found by users will only inconvenience them, and in the worst case they’ll delete your
application from their mobile phones (if they get really angry about the problems).
But if, for example, you’re writing software that manages hotel reservations, conse-
quences are more serious. Critical issues will result in customer anger, brand damage
for the hotel, and probable future financial losses.

 On the extreme end of the spectrum, consider the severity of consequences for
issues with the following:

■ Software that controls hospital equipment
■ Software that runs on a nuclear reactor
■ Software that tracks enemy ballistic missiles and retaliates with its own defensive

missiles (my favorite example)

How will you sleep at night if you’re not sure these applications are thoroughly tested
before reaching production status?

1.1 What is Spock?
This book is about Spock, a comprehensive
testing framework for Java (and Groovy)
code that can help you automate the boring,
repetitive, and manual process of testing a
software application. Spock is comprehen-
sive because it’s a union of existing Java test-
ing libraries, as shown in figure 1.1.

Figure 1.1 Spock among existing Java testing tools

Spock

Enterprise testing
(JUnit)

Can mock
and stub
(Mockito)

Behavior-driven
testing

(JBehave)
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

5What is Spock?
As the figure shows, Spock is a superset of the de facto testing framework for Java:
JUnit (http://junit.org/). Spock also comes with built-in capabilities for features that
normally require additional libraries. At its core, Spock is a testing framework capable
of handling the full lifecycle of a software application.

 Spock was initially created in 2008 by Peter Niederwieser, a software engineer with
Gradleware.1 Inspired by existing test tools such as jMock (www.jmock.org) and RSpec
(http://rspec.info/), Spock is used by several libraries within the open-source commu-
nity, including Apache Tapestry (https://github.com/apache/tapestry-5) and Mon-
goDB (https://github.com/mongodb/mongo-java-driver), and by several commercial
companies (for instance, Netflix). A second Spock committer is Luke Daley (also with
Gradleware), creator of the popular Geb functional testing framework (www.gebish
.org) demonstrated in chapter 7. Spock, a new entry in the test framework arena, chal-
lenges the undisputed king—JUnit—armed with a bunch of fresh ideas against the
legacy techniques of the past. Spock tests are written in Groovy, but they can test
either Groovy or Java code.

1.1.1 Mocking and stubbing

The most basic unit tests (called logic tests by some) are those that focus on the logic of
a single Java class. To test a single class in a controlled environment and isolate it from
the other classes it depends on (collaborators), Spock comes with built-in support for
“faking” external object communication. This capability, known as mocking and stub-
bing, isn’t inside vanilla JUnit; you need external libraries—for example, Mockito
(https://github.com/mockito/mockito) or jMock (http://www.jmock.org/)—to
achieve this isolation of a Java class.

1.1.2 Behavior-driven development

Spock also embraces the paradigm of behavior-driven development (BDD), a development
process that attempts to unify implementation, testing, and business people inside a
software organization, by introducing a central way of documenting requirements and
validating software functionality against those requirements, in a clear and repeatable
manner. Spock combines these facets into a single convenient package offering a
holistic approach to software testing.

1.1.3 Spock’s design features

Spock has the following characteristics.

ENTERPRISE-READY

Spock can be easily integrated with the popular build systems, Maven (https://
maven.apache.org/) and Gradle (https://gradle.org/). Spock runs as part of a build

1 The same company behind Gradle, a build system in Groovy (a replacement for Maven).
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

http://junit.org/
http://rspec.info/
https://github.com/apache/tapestry-5
https://github.com/mongodb/mongo-java-driver
www.gebish.org
www.gebish.org
https://github.com/mockito/mockito
http://www.jmock.org/
https://maven.apache.org/
https://maven.apache.org/
https://gradle.org/

6 CHAPTER 1 Introducing the Spock testing framework
process and produces reports of automated test runs. Spock can be used to test back-
end code, web pages, HTTP services, and more.

COMPREHENSIVE

Spock is a one-stop shop when it comes to testing. It has built-in capabilities for mock-
ing and stubbing (creating fake objects), allowing you to decide on the breadth of the
testing context. Spock can test a single class, a code module, or a whole application
context with ease. You can perform end-to-end testing with Spock (covered in chapter
7) or isolate one class/method for your testing needs without any external libraries
(described in chapter 6).

FAMILIAR/COMPATIBLE

Spock runs on top of the JUnit runner, which already enjoys mature support among
tools and development environments. You run your Spock tests in the same way as
your JUnit tests. You can even mix the two in the same project and get reports on test
failures or code coverage in a similar way to JUnit. Run your tests in parallel or in a
serial way; Spock doesn’t care because it’s fully compatible with existing JUnit tools.

INSPIRED

Spock is relatively new and doesn’t carry any legacy burden. It’s designed from scratch
but at the same time it takes the best features of existing testing libraries (and tries to
avoid their disadvantages). For example, Spock embraces the given-when-then struc-
ture of JBehave (http://jbehave.org/) but also discards the cumbersome record/
replay code of older mocking frameworks.

1.1.4 Spock’s coding features

Spock’s coding features are as follows.

CONCISE

Spock uses the Groovy syntax, which is already concise and mixes its simplified syntax
on top. No more tests that hide the substance with boilerplate code!

READABLE

Spock follows a close-to-English flow of statements that can be readable even by non-
technical people (for example, business analysts). Collaboration among analysis, devel-
opment, and testing people can be greatly simplified with Spock tests. If you always
wanted to name your test methods by using full English sentences, now you can!

METICULOUS

When things go wrong, Spock gives as much detail as possible on the inner workings
of the code at the time of failure. In some cases, this is more than enough for a devel-
oper to understand the problem without resorting to the time-consuming debugging
process.

EXTENSIBLE

Spock allows you to write your own extensions to cater to your specific needs. Several
of its “core” features are extensions (or started as extensions).
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

http://jbehave.org/

7What is Spock?

The
spe
be
JUn

be
es.

ing of
ses

n
e
 Listing 1.1 provides a sample test in Spock that illustrates several of these key cod-
ing features. The example shows a billing system that emails invoices to customers
only if they have provided an email address.

Don’t be alarmed by unknown keywords at this point. Even if you know absolutely no
Groovy at all, you should be able to understand the scenario in question by the pres-
ence of full English sentences. The following chapters explain all details of the syntax.
All of chapter 2 is devoted to Groovy and how it differs from Java.

class InvoiceMailingSpec extends spock.lang.Specification{

 def "electronic invoices to active email addresses"() {
 given: "an invoice, a customer, a mail server and a printer"
 PrinterService printerService = Mock(PrinterService)
 EmailService emailService = Mock(EmailService)
 Customer customer = new Customer()
 FinalInvoiceStep finalInvoiceStep = new
 FinalInvoiceStep(printerService, emailService)
 Invoice invoice = new Invoice()

 when: "customer is normal and has an email inbox"
 customer.hasEmail("acme@example.com")
 finalInvoiceStep.handleInvoice(invoice, customer)

 then: "invoice should not be printed. Only an
 email should be sent"
 0 * printerService.printInvoice(invoice)
 1 * emailService.sendInvoice(invoice,"acme@example.com")
 }
}

As you can see, the Spock test has a clear given-when-then flow denoted with labels
(the BDD style of tests), and each label comes fully documented with an English sen-
tence. Apart from the def keyword and the * symbol in the last two statements, almost
all code is Java-like. Note that the spock.lang.Specification class is runnable by
JUnit, meaning that this class can act as a JUnit test as far as build tools are concerned.
Upcoming chapters cover these and several other features of Spock.

How to use the code listings

You can find almost all code listings of this book at https://github.com/kkapelon/
java-testing-with-spock. For brevity, the book sometimes points you to the source code
(especially for long Java listings). I use the Eclipse integrated development environ-
ment (IDE) in my day-to-day work, as shown in the screenshots throughout the book.
You can find specific instructions for installing Spock and using it via Maven, Gradle,
Eclipse, and IntelliJ in appendix A.

Listing 1.1 Sample Spock test

 Spock
cification can
executed by a
it runner.

Full English
sentences descri
what the test do

Integrated mock
collaborator clas

Given-when-the
declarative styl
of BDD

Verifying interactions
of mocked objects
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

https://github.com/kkapelon/java-testing-with-spock
https://github.com/kkapelon/java-testing-with-spock

8 CHAPTER 1 Introducing the Spock testing framework
 Testing is a highly controversial subject among software developers, and often the
discussion focuses on testing tools and the number of tests that are needed in an
application. Heated discussions always arise on what needs to be tested in a large
application and whether tests help with deadlines. Some developers (hopefully, a
minority) even think that all tests are a waste of time, or that their code doesn’t need
unit tests. If you think that testing is hard, or you believe that you don’t have enough
time to write tests, this book will show you that Spock uses a concise and self-docu-
menting syntax for writing test cases.

 If, on the other hand, you’ve already embraced sound testing practices in your
development process, I’ll show you how the Spock paradigm compares to established
tools such as JUnit and TestNG (http://testng.org/).

 Before getting into the details of using Spock, let’s explore why you need a test
framework in the first place. After all, you already test your code manually as part of
every coding session, when you make sure that what you coded does what you
intended.

1.2 The need for a testing framework
The first level of testing comes from you. When you implement a new feature, you
make a small code change and then run the application to see whether the required
functionality is ready. Compiling and running your code is a daily task that happens
many times a day as you progress toward the required functionality.

 Some features, such as “add a button here that sorts this table of the report,” are
trivial enough that they can be implemented and tested in one run. But more-com-
plex features, such as “we need to change the policy of approving/rejecting a loan,”
will need several changes and runs of the application until the feature is marked as
complete.

 You can see this manual code-run-verify cycle in figure 1.2.

Developer

Start new
feature

Run application

See effects

Feature
done

Feature not
done yet

Code change

These tasks are boring
and repetitive in a manual
testing cycle. They should
be faster.

Figure 1.2 Testing software
manually becomes more
cumbersome as the application
code base grows.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

http://testng.org/

9The need for a testing framework
Manual testing is enough for small software projects. A quick prototype, a side project,
or a weekend coding session can be tested manually by a single person. In order for
the cycle to work effectively, a single loop must be quick enough for the developer to
see the results of the code change. In an ideal case, a single code change should be
verified in seconds. If running the whole application and reaching the point where
the new feature is found requires several minutes, developer productivity suffers.

 Writing software is a creative process that requires getting into the “zone.” Having
constant interruptions with lengthy intervals between each code change is a guaran-
teed way to disrupt the developer’s thinking about the code structure (not to mention
loss of time/money while waiting for the test to finish).

 As the programming code grows past a certain point, this manual cycle gets length-
ier, with more time spent running and testing the application than writing code. Soon
the run-verify time dominates the “developing” time. Another problem is the time it
takes to redeploy software with the new changes. Small software projects can be
deployed in seconds, but larger code bases (think bank software) may need several
minutes for a complete deployment, further slowing the manual testing cycle.

1.2.1 Spock as an enterprise-ready test framework

Spock is marketed as an enterprise-ready test framework, so it’s best to explain the
need for automated testing in the context of enterprise software—software designed
to solve the problems of a large business enterprise. Let’s look at an example that
reveals why a test framework is essential for large enterprise applications.

 Imagine you’ve been hired as a software developer for a multinational company
that sells sports equipment in an online shop. Most processes of the company depend
on a monolithic system that handles all daily operations.

 You’re one of several developers responsible for this central application that has all
the characteristics of typical enterprise in-house software:

■ The code base is large (more than 200,000 lines of code).
■ The development team is 5–20 people.
■ No developer knows all code parts of the application.
■ The application has already run in production for several years.
■ New features are constantly requested by project stakeholders.
■ Some code has been written by developers who have left the software

department.

The last point is the one that bothers you most. Several areas of the application have
nonexistent documentation, and no one to ask for advice.

DEALING WITH NEW REQUIREMENTS IN AN ENTERPRISE APPLICATION

You’re told by your boss that because the snow season is approaching, all ski-related
materials will get a 25% discount for a limited time period that must also be configu-
rable. The time period might be a day, a week, or any other arbitrary time period.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

10 CHAPTER 1 Introducing the Spock testing framework
 Your approach is as follows:

1 Implement the feature.
2 Check the functionality by logging manually into the e-shop and verifying that

the ski products have the additional discount during checkout.
3 Change the date of the system to simulate a day after the offer has ended.
4 Log in to the e-shop again and verify that the discount no longer applies.

You might be happy with your implementation and send the code change to the pro-
duction environment, thinking you’ve covered all possible cases, as shown in figure 1.3.

UNDERSTANDING ENTERPRISE COMPLEXITY: OF MODULES AND MEN

The next morning, your boss frantically tells you to revert the change because the
company is losing money! He explains that the e-shop has several VIP customers who
always get a 10% percent discount on all products. This VIP discount should never be
applied with other existing discounts. Because you didn’t know that, VIPs are now get-
ting a total discount of 35%, far below the profit margin of the company. You revert
the change and note that for any subsequent change, you have to remember to test
for VIP customers as well.

 This is a direct result of a large
code base with several modules
affecting more than one user-visible
feature, or a single user-visible fea-
ture being affected by more than
one code module. In a large enter-
prise project, some modules affect
all user-visible features (typical
examples are core modules for secu-
rity and persistence). This asymmet-
ric relationship is illustrated in
figure 1.4.

Ski season discount

Code change

Ski products with
expired discount

Non-ski products
are not affected.

Ski products with
active discount

Scenarios tested
manually in 30 minutes

Figure 1.3 Scenarios
tested after a simple
code change

VIP users

Daily deal

Seasonal offer

Discount coupons

Product categories

Discounts

Order history

Orders/
inventory/intranet

Features affected Code modules

Figure 1.4 A single change in one place has an
unwanted effect in another place.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

11The need for a testing framework
With the change reverted, you learn more about the business requirements of dis-
counts. The final discount of a product is affected by the following:

■ Types of customers (first time, normal, silver, VIP)
■ Three coupon code types (personal, seasonal, special)
■ Ad hoc limited-time offers
■ Standard seasonal discounts
■ Time of products in the warehouse
■ 30+ categories of sports equipment of the company

The next time you tamper with the discount code module, you’ll have to manually test
more than 100 cases of all the possible combinations. Testing all of them manually
would require at least four hours of boring, repetitive work, as shown in figure 1.5.

 This enterprise example should make it clear that the complexity of software makes
the manual testing cycle slow. Adding a new feature becomes a time-consuming process
because each code change must be examined for side effects in all other cases.

 Another issue similar to module interaction is the human factor: in a big applica-
tion, communication between domain experts, developers, testers, system administra-
tors, and so on isn’t always free of misunderstandings and conflicting requirements.
Extensive documentation, clear communication channels, and an open policy regard-
ing information availability can mitigate the problems but can’t completely eliminate
them.

Ski season discount

Code change

Ski products with
expired discount

Non-ski products
are not affected.

Ski products with
active discount

Scenarios tested
manually in 30 minutes

Ski products
with active discount

and voucher

Ski products
on limited offer

with active discount

Ski products
with silver customer

discount and voucher

Ski products
with VIP user and

active discount

Scenarios missed
during manual testing

Figure 1.5 Some scenarios
were missed by manual testing.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

12 CHAPTER 1 Introducing the Spock testing framework
As an example, a sales manager in the e-shop decides that he wants to see all tables in
the back-office application sorted by the value of the order, while at the same time an
inventory manager wants to sort the same tables by order size. Two separate develop-
ers could be tasked with these cases without knowing that the requirements are con-
flicting, as shown in figure 1.6.

 This enterprise example illustrates firsthand the problems of every large software
code base:

■ Manually testing every possible combination of data input after a code change
is difficult and even impossible in some cases.

■ It’s hard to predict which parts of the application will be affected by a single
code change. Developers are afraid to change existing code, fearing they might
break existing functionality.

■ Code changes for a new feature can enable previous bugs that have already
been fixed to resurface (regressions).

■ Understanding all system requirements from the existing code isn’t easy. Read-
ing the code provides information only on what happens and not on why it hap-
pens.

■ Redeploying the application to see the effects of a code change could be a
lengthy process on its own and could slow development time even further.

Now you know the major problems faced by a software development team working on
a big enterprise project. Next, let’s look at various approaches to tackling these
problems.

Reports

Single code module

Order

163
321
189

Sales
manager

“Please sort table by
money value of order.”

Value Size

$500
$350
$240

Small
Large

Medium

Order

321
189
163

Value Size

$350
$240
$500

Large
Medium
Small

Inventory
manager

“Please sort table
by product count.”

Figure 1.6 Similar features that
affect the same code module can
cause conflicts.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

13The need for a testing framework
1.2.2 Common ways to handle enterprise complexity

All software companies suffer from these problems and deal with them in one of the
following three ways or their variations (I’ve seen them all in real life):

■ Developers manually test everything after each code change.
■ Big code changes are avoided for fear of unforeseen bugs.
■ A layered testing approach is introduced that includes automated testing.

Let’s look at each of these solutions in turn.

PERFORMING MINDLESS MANUAL TESTING

In the first case (which is possible with only small- to middle-sized software projects),
developers aren’t entirely sure what’s broken after a code change. Therefore, they
manually test all parts of the application after they implement a new feature or fix an
issue. This approach wastes a lot of time/money because developers suffer from the
repetitive nature of testing (which is a natural candidate for automation).

 In addition, as the project grows, testing everything by hand becomes much more
difficult. Either the development progress comes to a crawl, as most developers deal
with testing instead of adding new features, or (the most common case) developers
add features and test only parts of the application that they think might be affected.
The result is that bugs enter production code and developers become firefighters;
each passing day is a big crisis as the customer discovers missing functionality.

AVOIDING BIG CODE CHANGES

In the second case, the “solution” is to never perform big code changes at all. This
paradigm is often embraced by large organizations with big chunks of legacy code (for
example, banks). Management realizes that new code changes may introduce bugs
that are unacceptable. On the other hand, manual testing of the code is next to
impossible because of the depth and breadth of all user scenarios (for example, you
can’t possibly test all systems of a bank in a logical time frame by hand).

 The whole code base is declared sacred. Changing or rewriting code is strictly for-
bidden by upper management. Developers are allowed to add only small features to
the existing infrastructure, without touching the existing code. Local gurus inspect
each code change extensively before it enters production status. Code reuse isn’t pos-
sible. A lot of code duplication is present, because each new feature can’t modify exist-
ing code. Either you already have what you need to implement your feature, or you’re
out of luck and need to implement it from scratch.

 If you’re a developer working in situations that belong to these first two cases
(manual testing and the big code base that nobody touches), I feel for you! I’ve been
there myself.

DELEGATING TO AN AUTOMATED TESTING FRAMEWORK

There’s a third approach, and that’s the one you should strive for. In the third case, an
automated test framework is in place that runs after every code change. The frame-
work is tireless, meticulous, and precise. It runs in the background (or on demand)
and checks several user features whenever a change takes place. In a well-managed
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

14 CHAPTER 1 Introducing the Spock testing framework
software creation process, the testing framework runs automatically after every devel-
oper commit as part of a build pipeline (for example, with the Jenkins build server,
available for free at http://jenkins-ci.org/). Results from this automatic run can influ-
ence further steps. A common policy is that code modules with failed test results
should never be deployed to a production environment.

 The test framework acts as an early warning system against unwanted code effects.
To illustrate the previous example, if you had a test framework in place, you’d get an
automated report after any change, as shown in figure 1.7.

 A test framework has the following characteristics.
It reduces

■ Feedback time needed to verify the effects of code changes
■ Boring, repetitive tasks

It ensures

■ Confidence when a new feature is implemented, a bug is fixed, or code is
refactored

■ The detection of conflicting requirements

It provides

■ Documentation for code and an explanation of the reasons behind the current
state

Code can be refactored, removed, and updated with ease, because the test framework
continuously reports unwanted side effects. Developers are free to devote most of
their time to coding new features and fixing existing (known) bugs. Features quickly
come into production code, and the customer receives a software package known to
be stable and solid for all scenarios supported by the test framework. An initial time
investment is required for the testing framework, but after it’s in place, the gains

Test
framework runs

1. First-time customer scenario OK
2. Normal customer scenario OK
3. Silver customer scenario OK
4. VIP scenario Failed

Change on
discount module

Revised change on
discount module

Feature done

Test
framework runs

1. First-time customer scenario OK
2. Normal customer scenario OK
3. Silver customer scenario OK
4. VIP scenario OK
....

Unwanted
change detected

Figure 1.7 Detecting unwanted changes with a test framework
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

http://jenkins-ci.org/

15Spock: the groovier testing framework
outperform the time it takes to write the test scripts. Catching code regressions and
severe bugs before they enter the production environment is much cheaper than
allowing them to reach the final users.

 A test framework also has other benefits not instantly visible with regard to code
quality. The process of making programming code testable enforces several con-
straints on encapsulation and extensibility that can be easily neglected if the code isn’t
created with tests in mind. Techniques for making your code testable are covered in
chapter 8. But the most important benefit of a test framework is the high developer
confidence when performing a deep code change.

 Let’s dig into how Spock, as a testing framework specializing in enterprise applica-
tions, can help you refactor code with such confidence.

1.3 Spock: the groovier testing framework
When I first came upon Spock, I thought that it would be the JUnit alternative to the
Groovy programming language. After all, once a programming language reaches a
critical mass, somebody ports the standard testing model, known as xUnit (https://
en.wikipedia.org/wiki/XUnit), to the respective runtime environment. xUnit frame-
works already exist for all popular programming languages.

 But Spock is not the xUnit of Groovy! It resembles higher-level testing frameworks,
such as RSpec and Cucumber (https://github.com/cucumber/cucumber-jvm), that
follow the concepts of BDD, instead of the basic setup-stimulate-assert style of xUnit.
BDD attempts (among other things) to create a one-to-one mapping between business
requirements and unit tests.

1.3.1 Asserts vs. Assertions

If you’re familiar with JUnit, one of the first things you’ll notice with Spock is the com-
plete lack of assert statements. Asserts are used in unit tests in order to verify the test.
You define the expected result, and JUnit automatically fails the test if the expected
output doesn’t match the actual one.

 Assert statements are still there if you need them, but the preferred way is to use
Spock assertions instead, a feature so powerful that it has been backported to Groovy
itself. You’ll learn more in chapter 2 about Power asserts and how they can help you
pinpoint the causes of a failing test.

1.3.2 Agnostic testing of Java and Groovy

Another unique advantage
of Spock is the ability to
agnostically test both Java
and Groovy code, as shown
in figure 1.8.

Figure 1.8 Spock can test
both Java and Groovy code.

Test passed

Spock test runs

Test failed

Java and/or Groovy code

Spock Groovy test
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

https://en.wikipedia.org/wiki/XUnit
https://en.wikipedia.org/wiki/XUnit
https://github.com/cucumber/cucumber-jvm

16 CHAPTER 1 Introducing the Spock testing framework
Groovy is a dynamic language that runs in the same Java Virtual Machine (JVM) as
Java. Java supporters are proud of the JVM, and some believe that the value of the JVM
as a runtime environment is even higher than Java the language. Spock is one exam-
ple of the power the JVM has to accommodate code from different programming lan-
guages.

 Spock can test any class that runs on the JVM, regardless of the original source
code (Java or Groovy). It’s possible with Spock to test either a Java class or a Groovy
class in the exact same way. Spock doesn’t care about the origin of the class, as long as
it’s JVM-compatible. You can even verify both Java and Groovy code in the same Spock
test if your project is a mix of the two.

1.3.3 Taking advantage of Groovy tricks in Spock tests

Finally, you need to know that Groovy is a dynamic language that behaves differently
than Java in some important aspects (such as the declaration of variables), as you’ll
learn in chapter 2. This means that several “tricks” you learn with Spock are in reality
a mix of both Groovy and Spock magic, because Spock can extend Groovy syntax in
ways that would be difficult with Java (if not impossible). And yes, unlike Java, in
Groovy a library/framework can change the syntax of the code as well. Spock is one
such library, as you’ll learn in chapter 4.

 As you become more familiar with Spock and Groovy, the magic behind the cur-
tain will start to appear, and you might even be tempted to use Groovy outside Spock
tests as well!

1.4 Getting an overview of Spock’s main features
Before starting with the details of Spock code, let’s take a bird’s-eye view of its major
features and how they implement the good qualities of a testing framework, as already
explained.

AST transformations: changing the structure of the Groovy language

Several tricks of Groovy magic come from the powerful meta-programming facilities
offered during runtime that can change classes and methods in ways impossible with
vanilla Java. At the same time, Groovy also supports compile-time macros (abstract
syntax tree, or AST, transformations in Groovy parlance). If you’re familiar with macros
in other programming languages, you should be aware of the power they bring to code
transformations. By using AST transformations, a programmer can add/change sev-
eral syntactic features of Groovy code, modifying the syntax in forms that were difficult
or impossible in Java.

Spock takes advantage of these compile and runtime code-transformation features
offered by Groovy in order to create a pseudo-DSL (domain specific language) specif-
ically for unit tests. All the gory details of Spock syntax are explained in chapter 4.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

17Getting an overview of Spock’s main features
1.4.1 Enterprise testing

A test framework geared toward a big enterprise application has certain requirements
in order to handle the complexity and possible configurations that come with enter-
prise software. Such a test framework must easily adapt to the existing ecosystem of
build tools, coverage metrics, quality dashboards, and other automation facilities.

 Rather than reinventing the wheel, Spock bases its tests on the existing JUnit run-
ner. The runner is responsible for executing JUnit tests and presenting their results to
the console or other tools (for example, the IDE). Spock reuses the JUnit runner to
get for free all the mature support of external tools already created by Junit:

■ Do you want to see code coverage reports with Spock?
■ Do you want to run your tests in parallel?
■ Do you want to divide your tests into long running and short running?

The answer to all these questions is “Yes, you do, as you did before with JUnit.” More
details about these topics are presented in chapter 7.

1.4.2 Data-driven tests

A common target for unit tests is to handle input data for the system in development.
It’s impossible to know all potential uses for your application in advance, let alone the
ways people are going to use and misuse your application.

 Usually a number of unit tests are dedicated to possible inputs of the system in a
gradual way. The test starts with a known set of allowed or disallowed input, and as
bugs are encountered, the test is enriched with more cases. Common examples
include a test that checks whether a username is valid or which date formats are
accepted in a web service.

 These tests suffer from a lot of code duplication if code is handled carelessly. The
test is always the same (for example, Is the username valid?), and only the input
changes. Whereas JUnit has some facilities for this type of test (parameterized test),
Spock takes a different turn, and offers a special DSL that allows you to embed data
tables in Groovy source code. Data-driven tests are covered in chapter 5.

1.4.3 Mocking and stubbing

For all its strengths, object-oriented software suffers from an important flaw. The fact
that two objects work correctly individually doesn’t imply that both objects will also
work correctly when connected to each other. The reverse is also true: side effects
from an object chain may hide or mask problems that happen in an individual class.

 A direct result of these facts is that testing software usually needs to cover two lev-
els at once: the integration level, where tests examine the system as a whole (integra-
tion tests), and the class level, where tests examine each individual class (unit tests or
logic tests).

 To examine the microscopic level of a single class and isolate it from the macro-
scopic level of the system, a controlled running environment is needed. A developer
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

18 CHAPTER 1 Introducing the Spock testing framework

Initi
class

nt

has to focus on a single class, and the rest of the system is assumed to be “correct.”
Attempting to test a single class inside the real system is difficult, because for any bugs
encountered, it’s not immediately clear whether they happen because of the class
under test or the environment.

 For this reason, a mocking framework is needed that “fakes” the rest of the system
and leaves only the class under test to be “real.” The class is then tested in isolation
because even though it “thinks” that it’s inside a real system, in reality all other collab-
orating classes (collaborators) are simple puppets with preprogrammed input and
output.2

 In the JUnit world, an external library is needed for mocking. Numerous libraries
exist, with both strengths and weaknesses—for example, Mockito, jMock, EasyMock
(http://easymock.org/) and PowerMock (www.powermock.org/). Spock comes with
its own built-in mocking framework, as you’ll see in chapter 6. Combined with the
power of Groovy meta-programming (as described in chapter 2), Spock is a compre-
hensive DSL that provides all the puzzle pieces needed for testing.

 Now that we’ve covered the theory and you know the foundations of a solid testing
process and how Spock can test classes written in Java, it’s time to delve into code!

1.5 A first look at Spock in action
The following examples should whet your appetite, so don’t stress over the strange syn-
tax or any unknown keywords. I cover Spock syntax throughout the rest of the book.

1.5.1 A simple test with JUnit

When introducing a new library/language/framework, everybody expects a “hello
world” example. This section shows what Spock looks like in a minimal, but fully func-
tional example.

 The following listing presents the Java class you’ll test. For comparison, a possible
JUnit test is first shown, as JUnit is the de facto testing framework for Java, still undis-
puted after more than a decade.

public class Adder {
 public int add(int a, int b) {
 return a+b;
 }
}
public class AdderTest {
 @Test
 public void simpleTest() {
 Adder adder = new Adder();
 assertEquals("1 + 1 is 2", 2 ,adder.add(1, 1));

2 I always enjoyed this evil aspect of testing—my own puppet theater, where the protagonist can’t see behind
the scenes.

Listing 1.2 Java class under test and JUnit test

A trivial class that will be tested
(a.k.a. class under test)

Test case for the
class in question

alization of
 under test

JUnit assert stateme
that compares 2 and
the result of add(1,1)
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

http://easymock.org/
www.powermock.org/

19A first look at Spock in action

sta
co
a

All Sp
the Sp

A “then”
hold v

test
 }
 @Test
 public void orderTest() {
 Adder adder = new Adder();
 assertEquals("Order does not matter ",5,adder.add(2, 3));
 assertEquals("Order does not matter ",5,adder.add(3, 2));
 }
}

You introduce two test methods, one that tests the core functionality of your Adder
class, and one that tests the order of arguments in your add method.

 Running this JUnit test
in the Eclipse develop-
ment environment (right-
click the .java file and
choose Run As > JUnit Test
from the menu) gives the
results shown in figure 1.9.

1.5.2 A simple test with Spock

The next listing shows the same test in Groovy/Spock. Again, this test examines the
correctness of the Java class Adder that creates the sum of two numbers.

class AdderSpec extends spock.lang.Specification{
 def "Adding two numbers to return the sum"() {
 when: "a new Adder class is created"
 def adder = new Adder();

 then: "1 plus 1 is 2"
 adder.add(1, 1) == 2
 }
 def "Order of numbers does not matter"() {
 when: "a new Adder class is created"
 def adder = new Adder();

 then: "2 plus 3 is 5"
 adder.add(2, 3) == 5

 and: "3 plus 2 is also 5"
 adder.add(3, 2) == 5
 }
}

If you’ve never seen Groovy code before, this Spock segment may seem strange. The
code has mixed lines of things you know (for example, the first line with the extends

Listing 1.3 Spock test for the Adder Java class

A second scenario for
the class under testTwo assert

tements that
mpare 5 with
dding 2 and 3

Figure 1.9 Running a JUnit test in Eclipse

ock tests extend
ecification class.

A Groovy method with a
human-readable name that
contains a test scenario

A “when” block
that sets the sceneInitialization of Java

class under test block that will
erification code

A Groovy assert
statementAnother

scenario

An “and” block that
accompanies the “then” block
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

20 CHAPTER 1 Introducing the Spock testing framework
keyword) and things completely alien to you (for example, the def keyword). Details
on Groovy syntax are explained in chapter 2.

 On the other hand, if you’re already familiar with BDD, you’ll already grasp the
when/then pattern of feature testing.

 The upcoming chapters explain Spock syntax in detail. For example, the def key-
word (which stands for define) is how you declare things in Groovy without explicitly
specifying their type (which is a strict requirement in Java). The Spock blocks (when:,
then:, and:) are covered in chapter 4.

 How do you run this test? You run it in the same way as a JUnit test! Again, right-
click the Groovy class and choose Run As > JUnit Test from the pop-up menu. The
result in Eclipse is shown in figure 1.10.

 Other than the most descriptive method names, there’s little difference between
the JUnit and Spock results in this trivial example. Although I use Eclipse here, Spock
tests can run on all environments/tools that already support JUnit tests (for example,
IntelliJ IDEA).

TAKEAWAYS FROM THESE CODE EXAMPLES

Here’s what you need to take away from this code sample:

■ The almost English-like flow of the code. You can easily see what’s being tested,
even if you’re a business analyst or don’t know Groovy.

■ The lack of any assert statements. Spock has a declarative syntax, which explains
what you consider correct behavior.

■ The fact that Spock tests can be run like JUnit tests.

Let’s move on to one of the killer features of Spock (handling failed tests).

1.5.3 Inspecting failed tests with Spock

One of the big highlights of Spock code is the lack of assert statements compared to
JUnit. In the previous section, you saw what happens when all tests pass and the happy
green bar is shown in Eclipse. But how does Spock cope with test failures?

 To demonstrate its advantages over JUnit, you’ll add another (trivial) Java class that
you want to test:

public class Multiplier {
 public int multiply(int a, int b)
 {
 return a * b;
 }
}

Figure 1.10 Running a
Spock test in Eclipse
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

21A first look at Spock in action

A te
that w
two J

at the

se g

math
co
For this class, you’ll also write the respective JUnit test, as shown in the following list-
ing. But as an additional twist (for demonstration purposes), you want to test this class
not only by itself, but also in relation to the Adder class shown in the previous section.

public class MultiplierTest {
 @Test
 public void simpleMultiplicationTest() {

 Multiplier multi = new Multiplier();
 assertEquals("3 times 7 is 21",21,multi.multiply(3, 7));
 }
 @Test
 public void combinedOperationsTest() {

 Adder adder = new Adder();
 Multiplier multi = new Multiplier();

 assertEquals("4 times (2 plus 3) is 20",
 20,multi.multiply(4, adder.add(2, 3)));
 assertEquals("(2 plus 3) times 4 is also 20",
 20,multi.multiply(adder.add(2, 3),4));
 }
}

Running this unit test results in a green bar because both tests pass. Now for the equiv-
alent Spock test, shown in the next listing.

class MultiplierSpec extends spock.lang.Specification{
 def "Multiply two numbers and return the result"() {
 when: "a new Multiplier class is created"
 def multi = new Multiplier();

 then: "3 times 7 is 21"
 multi.multiply(3, 7) == 21
 }
 def "Combine both multiplication and addition"() {
 when: "a new Multiplier and Adder classes are created"
 def adder = new Adder();
 def multi = new Multiplier()

 then: "4 times (2 plus 3) is 20"
 multi.multiply(4, adder.add(2, 3)) == 20

 and: "(2 plus 3) times 4 is also 20"
 multi.multiply(adder.add(2, 3),4) == 20
 }
}

Listing 1.4 A JUnit test for two Java classes

Listing 1.5 Spock test for two Java classes

st scenario
ill examine
ava classes
 same time Creation of the

first Java class

Creation of the
cond Java class

Verification of a
mathematical result comin
from both Java classes

A test scenario that will
examine two Java classes
at the same time

Creation of the
first Java class Creation of the

second Java class
Verification of a
ematical result

ming from both
Java classes
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

22 CHAPTER 1 Introducing the Spock testing framework

A dum
happe
first a
Again, running this test will pass with flying colors. You might start to believe that we
gain nothing from using Spock instead of JUnit. But wait!

 Let’s introduce an artificial bug in your code to see how JUnit and Spock deal with
failure. To mimic a real-world bug, you’ll introduce it in the Multiplier class, but
only for a special case (see the following listing).

public class Multiplier {
 public int multiply(int a, int b) {
 if(a == 4) {
 return 5 * b; //multiply an extra time.
 }
 return a *b;
 }
}

Now run the JUnit test and see what happens (figure 1.11).
 You have a test failure. But do you notice anything strange here? Because the bug

you introduced is subtle, JUnit says this to you:

■ Addition by itself works fine.
■ Multiplication by itself works fine.
■ When both of them run together, we have problem.

But where is the problem? Is the bug on the addition code or the multiplication? We
can’t say just by looking at the test result (OK, OK, the math might give you a hint in
this trivial example).

 You need to insert a debugger in the unit test to find out what happened. This is
an extra step that takes a lot of time because re-creating the same context environ-
ment can be a lengthy process.

SPOCK KNOWS ALL THE DETAILS WHEN A TEST FAILS

Spock comes to the rescue! If you run the same bug against Spock, you get the mes-
sage shown in figure 1.12.

 Spock comes with a super-charged error message that not only says you have a fail-
ure, but also calculates intermediate results!

Listing 1.6 Introducing an artificial bug in the Java class under test

my bug that
ns only if the
rgument is 4

Figure 1.11 Failure of JUnit test in Eclipse
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

23Spock’s position in the Java ecosystem
As you can see, it’s clear from the test that the addition works correctly (2 + 3 is indeed
5) and that the bug is in the multiplication code (4 × 5 doesn’t equal 25).

 Armed with this knowledge, you can go directly to the Multiplier code and find
the bug. This is one of the killer features of Spock, and may be enough to entice you
to rewrite all your JUnit tests in Spock. But a complete rewrite isn’t necessary, as both
Spock and JUnit tests can coexist in the same code base, which you’ll explore next.

1.6 Spock’s position in the Java ecosystem
The de facto testing framework in a Java project is JUnit, but TestNG is another testing
framework for Java that’s similar. At one point, TestNG had several extra features that
JUnit lacks, resulting in a lot of developers switching over to TestNG (especially for big
enterprise projects). But JUnit quickly closed the gap, and TestNG failed to gain a
majority in the mindset of Java developers. The throne of JUnit is still undisputed. I’ve
seen junior Java developers who think that JUnit and unit testing are the exact same
thing. In reality, JUnit is one of the many ways that unit tests can be implemented.

 Unit tests in both JUnit and TestNG are written in Java as well. Traditionally, this has
been seen as an advantage by Java developers because they use the same program-
ming language in both production code and testing code. Java is a verbose language
(at least by today’s standards) with a lot of boilerplate code, several constraints (for
example, all code must be part of a class, even static methods), and a heavy syntax
requiring everything to be explicitly defined. Newer editions of Java (after version 7)
attempt to rectify this issue with mixed success, never reaching the newer “convention-
over-configuration” paradigm of other programming languages.

 It doesn’t have to be this way, though. There’s no technical reason to constrain
unit tests so that they’re in the same programming language as the development code.
In fact, production and testing code have completely different requirements. The big-
gest difference is that testing code runs by definition before the application is deployed
in production. A good engineer uses the best tool for the job. You can think of Spock
as a special domain language created exclusively for testing purposes.

Figure 1.12 Failure of a Spock test in Eclipse
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

24 CHAPTER 1 Introducing the Spock testing framework
 Compilation and running of unit tests is a common task for the developer or the
build server inside a software company. Runtime and compile-time errors in unit tests
are detected at the same time. Java goes to great lengths to detect several errors dur-
ing compile time instead of runtime. This effort is wasted in unit tests because these
two phases usually run one after the other during the software development lifecycle.
The developer still pays the price for the verbosity of Java, even for unit tests. There
must be a better way.

 Groovy comes to the rescue!

1.6.1 Making Spock Groovy

Groovy is a dynamic programming language (similar to Python or Ruby), which
means it gives the programmer power to defer several checks until runtime. This
might seem like a disadvantage, but this feature is exactly what unit tests should
exploit. Groovy also has a much nicer syntax than Java because several programming
aspects have carefully selected defaults if you don’t explicitly define them (convention
over configuration).

 As an example, if you omit the visibility modifier of a class in Java, the class is auto-
matically package private, which ironically is the least used modifier in Java code.
Groovy does the logical thing: if you omit the visibility modifier of a class, the class is
assumed to be public, which is what you want most times.

 The times that I’ve had to create JUnit tests with package private visibility in my
programming career: zero! For all these years, I’ve “paid” the price of declaring all my
unit tests (and I guess you have, as well) as public, without ever thinking, “There
must be a better way!” Groovy has embraced the convention-over-configuration con-
cept, and this paradigm is evident in Spock code as well.

With Spock, you can gain the best of both worlds. You can keep the tried-and-true Java
code in your core modules, and at the same time, you gain the developer productivity
of Groovy in the testing code without sacrificing anything in return. Production code
is written with verbose and fail-safe Java code, whereas unit tests are written in the

Testing Groovy code with JUnit

The topic of this book is how to test Java code with the Spock framework (which is
written in Groovy). The reverse is also possible with JUnit:

■ You can write a normal JUnit test in Java, where the class under test is imple-
mented in Groovy.

■ You can also write the JUnit test in Groovy to test Groovy or Java code.
■ Finally, Groovy supports a GroovyTestCase class, which extends the standard

TestCase from JUnit.

Because this is a book about Spock, I don’t cover these combinations. See Making
Java Groovy by Ken Kousen (Manning, 2013) if you’re interested in any of these cases.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

25Spock’s position in the Java ecosystem
friendlier and lighter Groovy syntax that cuts down on unneeded modifiers and pro-
vides a much more compact code footprint. And the best part is that you keep your
existing JUnit tests!

1.6.2 Adding Spock tests to existing projects that have JUnit tests

Every new technology faces a big obstacle in its path to adoption: resistance to change.
Tradition, inertia, and the projected cost of switching to another technology instead
of the mature existing solution are always major factors that affect any proposal for
improvement when a better solution comes along.

 As an example, Gradle is a build system, also written in Groovy, which is in many
ways more flexible than the de facto build system of Java (Maven). Using two build sys-
tems in a big enterprise project is unrealistic. Gradle has to face the entrenched
Maven supporters and convince them that the switch offers compelling advantages.

 Spock doesn’t suffer from this problem. You can integrate Spock today in your Java
project without rewriting or removing a single line of code or configuration. This is a
huge win for Spock because it allows a gradual adoption; both old JUnit tests and
newer Spock tests can coexist peacefully. It’s perfectly possible to implement a gradual
Spock adoption strategy in your organization by implementing new tests in Spock dur-
ing a trial period without losing anything if you decide to keep implementing JUnit
tests as well.

 The standard Maven directory structure is flexible in accommodating multiple
programming languages. Groovy source code is usually placed in the src/test/groovy
folder so that the Groovy compiler plugin can find it. All your Spock tests can go into
this directory without affecting your existing JUnit tests located in src/test/java (or
other directories), as shown in figure 1.13.

Java production code

Spock tests

JUnit tests

Figure 1.13 Spock tests
in a Maven project with
existing JUnit tests
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

26 CHAPTER 1 Introducing the Spock testing framework
For more details on how to set up your IDE for Spock testing, see appendix A.
 With the Spock tests in place, the next question you might have is how to run

them. You’ll be happy to know that Spock comes with a test runner called Sputnik
(from Spock and JUnit) that runs on top of the existing JUnit runner, thus keeping
full backward compatibility.

 You can run any Spock test as you run any JUnit test:

■ From your development environment
■ From the command line
■ From Maven/Gradle or any other build system that supports JUnit tests
■ From an automated script or build server environment (as explained in

chapter 7)

1.6.3 Spock adoption path in a Java project

Because Spock is compatible with JUnit runners, it can be introduced gradually in an
existing Java code base. Assuming you start with a 100% Java project, as shown at the
top left of figure 1.14, Spock can run alongside JUnit tests in the same code base.

 It’s possible to rewrite all tests in Spock if that’s what you want. Spock can work as a
superset of JUnit, as you’ll see in chapter 3. That situation is shown in the third
scenario, depicted at the far right of figure 1.14.

The Spock Web Console

You can also run Spock tests without installing anything at all, with the Spock Web
Console. If you visit https://meetspock.appspot.com/, you can play with the Spock
syntax and get a feel for how easy it is to write Spock tests by using only your browser.

The Spock Web Console is based on the excellent Groovy Web Console (https://
groovyconsole.appspot.com/) that offers a Groovy playground on the web, ready for
you to explore from the comfort of your web browser.

JavaCore

JUnitTests

MavenBuild

1. Pure Java

Java

Maven

JUnit

Spock

2. Spock/JUnit

Java

Spock

Maven

3. Spock only

Figure 1.14 Gradual invasion of Spock tests in an existing Java project with JUnit tests
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

https://meetspock.appspot.com/
https://groovyconsole.appspot.com/
https://groovyconsole.appspot.com/

27Comparing Spock and JUnit
For this book, I assume that you have no prior experience with Groovy. Chapter 2 is
fully devoted to Groovy features, and I’ll also be careful to explain which new syntax is
a feature of Spock and which is a feature of Groovy.

1.7 Comparing Spock and JUnit
Comparing JUnit and Spock in a single section is difficult because both tools have a
different philosophy when it comes to testing. JUnit is a Spartan library that provides
the absolutely necessary thing you need to test and leaves additional functionality
(such as mocking and stubbing) to external libraries.

 Spock takes a holistic approach, providing a superset of the capabilities of JUnit,
while at the same time reusing its mature integration with tools and development
environments. Spock can do everything that JUnit does and more, keeping backward
compatibility as far as test runners are concerned.

 What follows is a brief tour of some Spock highlights. Chapter 3 compares similar
functionality between Spock and JUnit. If you’re not familiar with JUnit, feel free to
skip the comparisons and follow the Spock examples.

1.7.1 Writing concise code with Groovy syntax

Spock is written in Groovy, which is less verbose than Java. Spock tests are more con-
cise than the respective JUnit tests. This advantage isn’t specific to Spock itself.
Any other Groovy testing framework would probably share this trait. But at the
moment, only Spock exists in the Groovy world. Figure 1.15 shows this advantage in a
visual way.

Less code is easier to read, easier to debug, and easier to maintain in the long run.
Chapter 3 goes into more detail about how Groovy supports less-verbose code than
Java.

1.7.2 Mocking and stubbing with no external library

JUnit doesn’t support mocking and stubbing on its own. Several Java frameworks fill
this position. The main reason that I became interested in Spock in the first place is

Core Java code

Tests in JUnit/Mockito

Using Java tools

Core Java code

Using Java and Spock

Tests in Spock
Figure 1.15 Amount of code in an
application with JUnit and Spock tests
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

28 CHAPTER 1 Introducing the Spock testing framework
that it comes “batteries included,” with mocking and stubbing supported out of the
box. As figure 1.16 shows, it does even more than that.

 I’ll let this example explain:
 David goes into a software company and starts working on an existing Java code

base. He’s already familiar with JUnit (the de facto testing framework for Java). While
working on the project, he needs to write some unit tests that need to run in a specific
order. JUnit doesn’t support this, so David also includes TestNG in the project.

 Later he realizes that he needs to use mocking for some special features of the soft-
ware (for example, the credit card billing module), so he spends time researching all
the available Java libraries (there are many). He chooses Mockito and integrates it
into the code base.

 Months pass, and David learns all about behavior-driven development in his local
dev meeting. He gets excited! Again he researches the tools and selects JBehave for
his project in order to accomplish BDD.

 Meanwhile, Jane is a junior developer who knows only vanilla Java. She joins the
same company and gets overwhelmed the first day because she has to learn three or
four separate tools just to understand all the testing code.

 In an alternate universe, David starts working with Spock as soon as he joins the
company. Spock has everything he needs for all testing aspects of the application. He
never needs to add another library or spend time researching stuff as the project
grows.

 Jane joins the same company in this alternate universe. She asks David for hints on
the testing code, and he replies, “Learn Spock and you’ll understand all testing code.”
Jane is happy because she can focus on a single library instead of three.

 You’ll learn more about stubbing/mocking/spying in chapter 6. The semantics of
Spock syntax are covered in chapter 4.

1.7.3 Using English sentences in Spock tests and reports

The next listing presents a questionable JUnit test (I see these all the time). It contains
cryptic method names that don’t describe what’s being tested.

Status quo

Spock

Growth of
testing needs

Spock for everything

JUnit/testNG

EasyMock/JMock/Mockito

Cucumber/JBehave

Figure 1.16 Spock is a superset of JUnit.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

29Comparing Spock and JUnit

h
unde

H

public class ClientTest {
 @Test
 public void scenario1() {

 CreditCardBilling billing = new CreditCardBilling();
 Client client client = new Client();
 billing.chargeClient(client,150);
 assertTrue("expect bonus",client.hasBonus());
 }
 @Test
 public void scenario2() {

 CreditCardBilling billing = new CreditCardBilling();
 Client client client = new Client();
 billing.chargeClient(client,150);
 client.rejectsCharge();
 assertFalse("expect no bonus",client.hasBonus());
 }

Only programmers can understand this code. Also, if the second test breaks, a project
manager (PM) will see the report and know that “scenario2” is broken. This report has
no value for the PM, because he doesn’t know what scenario2 does without looking at
the code.

 Spock supports an English-like flow. The next listing presents the same example in
Spock.

class BetterSpec extends spock.lang.Specification{

 def "Client should have a bonus if he spends more than 100 dollars"() {
 when: "a client buys something with value at least 100"
 def client = new Client();
 def billing = new CreditCardBilling();
 billing.chargeClient(client,150);

 then: "Client should have the bonus option active"
 client.hasBonus() == true
 }
 def "Client loses bonus if he does not accept the transaction"() {
 when: "a client buys something and later changes mind"
 def client = new Client();
 def billing = new CreditCardBilling();
 billing.chargeClient(client,150);
 client.rejectsCharge();

 then: "Client should have the bonus option inactive"
 client.hasBonus() == false
 }
}

Listing 1.7 A JUnit test with method names unrelated to business value

Listing 1.8 A Spock test with methods that explain the business requirements

A test method wit
a generic name

Nontechnical
people can’t

rstand the test.

Business
description

of test

uman-readable
test result
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

30 CHAPTER 1 Introducing the Spock testing framework
Even if you’re not a programmer, you can read the English text in the code (the sen-
tences inside quotation marks) and understand the following:

■ The client should get a bonus if he spends more than 100 dollars.
■ When a client buys something with a value of at least 100, then the client should

have the bonus option active.
■ The client loses the bonus if he doesn’t accept the transaction.
■ When a client buys something and later changes his mind, then the client

should have the bonus option inactive.

This is readable. A business analyst could read the test and ask questions about other
cases. (What happens if the client spends $99.99? What happens if he changes his
mind the next day rather than immediately?)

 If the second test breaks, the PM will see in the report a red bar with the title “Cli-
ent loses bonus if he doesn’t accept the transaction.” He instantly knows the severity of
the problem (perhaps he decides to ship this version if he considers it noncritical).

 For more information on Spock reporting and how Spock can be used as part of
an enterprise delivery process, see chapter 7.

1.8 Summary
■ Spock is an alternative test framework written in the Groovy programming lan-

guage.
■ A test framework automates the boring and repetitive process of manual test-

ing, which is essential for any large application code base.
■ Although Spock is written in Groovy, it can test both Java and Groovy code.
■ Spock has built-in support for mocking and stubbing without an external

library.
■ Spock follows the given-when-then code flow commonly associated with the

BDD paradigm.
■ Both Groovy and Java build and run on the JVM. A large enterprise build can

run both JUnit and Spock tests at the same time.
■ Spock uses the JUnit runner infrastructure and therefore is compatible with all

existing Java infrastructure. For example, code coverage with Spock is possible
in the same way as JUnit.

■ One of the killer features of Spock is the detail it gives when a test fails. JUnit
mentions the expected and actual value, whereas Spock records the surround-
ing running environment, mentioning the intermediate results and allowing
the developer to pinpoint the problem with greater ease than JUnit.

■ Spock can pave the way for full Groovy migration into a Java project if that’s
what you want. Otherwise, it’s possible to keep your existing JUnit tests in place
and use Spock only in new code.

■ Spock tests have the ability to include full English sentences in their code struc-
tures, allowing for easy documentation.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

Groovy knowledge for
Spock testing
Learning a new programming language is usually a daunting task. You must study a
new syntax, new concepts, and new libraries all at once to be productive. If you’ve
spent too many years with a single language, several concepts are so entrenched
that having to “unlearn” them poses a big barrier to any alternative (even if it’s
objectively better). With Groovy, this isn’t the case because Groovy is a cousin lan-
guage to Java. Much of your current knowledge can be reused and extended
instead of thrown away.

 This chapter gives you a crash course in the essentials of Groovy. It’s important
to know your way around Groovy code before writing Spock tests. I’ve seen several

This chapter covers
■ Understanding the connection between Java and

Groovy
■ Learning Groovy conventions
■ Comparing JUnit asserts and Groovy power

asserts
■ Using Groovy utilities for common testing needs
■ Obtaining test data with Groovy
31

Licensed to Stephanie Bernal <nordicka.n@gmail.com>

32 CHAPTER 2 Groovy knowledge for Spock testing
Java developers who jump into Spock, but write the same JUnit-like tests as they
did before.

 Because the subject of this book is the Spock testing framework (and by extension
other relevant testing topics), all Groovy capabilities listed are those relevant to unit
tests only. Groovy has many more features aimed at writing production code (and not
unit test code). Explaining all of Groovy’s concepts is impossible in a single chapter;
extensive books already exist on vanilla Groovy that you should consult if you decide
to use it outside Spock unit tests.

 Apart from Groovy in Action by Dierk Konig and Paul King (Manning, 2015), which
is the major source for all things Groovy, I also recommend Making Java Groovy by Ken
Kousen (Manning, 2013), which emphasizes the augmenting role of Groovy com-
pared to Java.

2.1 What you need to know about Groovy
If you already know Java, you have knowledge in three distinct areas:

■ The syntax/keywords of the Java language
■ The Java Development Kit (JDK) that contains many helpful collections and

utilities
■ The Java runtime (Java Virtual Machine)

It would be a mistake to think that learning Groovy is like learning a new program-
ming language from scratch. Groovy was designed as a companion to Java.

 Groovy offers the productivity boost of a dynamic language (think Python or
Ruby) because it doesn’t have as many restrictions as Java. But at the same time, it runs
in the familiar JVM and can take advantage of all Java libraries. It completely removes
some bulky features of Java and always attempts to minimize boilerplate code by pro-
viding only the gist of what you’re doing.

 Java is mature as a platform, but as a language, it lags behind in some areas (for
example, concurrent facilities or, until recently, functional constructs) that usually are
filled by external frameworks. Groovy closes this gap and provides a modern language
aimed at productive code sessions in a stable and mature ecosystem of libraries.

 Groovy syntax is a superset of Java syntax. Almost all Java code (with some minor
exceptions) is valid Groovy code as well. The Groovy Development Kit, or GDK
(www.groovy-lang.org/gdk.html), is an enhanced version of the JDK. And most impor-
tant of all, Groovy runs on the JVM exactly like Java does!

 For those reasons, your journey into the magic world of Groovy should be a pleas-
ant adventure in a different yet familiar land. If Java isn’t the only language you speak
and you have some experience with other dynamic languages such as Python or Ruby,
picking up the basics of Groovy will be an even easier matter.

 In a nutshell, Groovy

■ Is a dynamic language (Java is static)
■ Is a strongly typed language (same as Java)
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

http://www.groovy-lang.org/gdk.html

33What you need to know about Groovy
■ Is object-oriented (same as Java)
■ Comes with the GDK (Java has the JDK)
■ Runs on the JVM (same as Java)
■ Favors concise code (Java is considered verbose compared to Groovy)
■ Offers its own libraries (for example, web and object relational frameworks)
■ Can use any existing Java library as-is (Java can also call Groovy code)
■ Has closures (Java 8 has lambda expressions)
■ Supports duck typing1 (Java has strict inheritance)

You’ll explore the most important concepts in the next sections and see side-by-side
Java and Groovy code where appropriate. I spent a lot of time thinking about which of
the Groovy features to showcase in this chapter. I decided to split Groovy features into
four categories—essential, useful, advanced, and everything else:

■ Sections 2.1 and 2.2 contain knowledge that I consider essential for Spock tests.
■ Sections 2.3 and 2.4 contain Groovy features that you’ll find useful in your every-

day contact with Spock but aren’t otherwise essential.
■ Section 2.5 contains some advanced Groovy features that you may need in your

Spock tests in about 20%2 of cases.
■ Finally, the rest of Groovy features were left out of this book (even if some of

them are essential for writing production code and not unit tests). I invite you
to look at the official Groovy web page for more details that I haven’t included
here (and there are a lot).

1 You can learn more about duck typing on Wikipedia at http://en.wikipedia.org/wiki/Duck_typing.
2 This number is not scientific in any way.

What is the biggest difficulty while learning Groovy as a Java programmer?

If Java is the only language you know, then the biggest barrier (in my opinion) to learning
Groovy is Groovy’s dynamic nature. Java provides a direct mapping between a source
file and a class. If you know the source code, you know everything there is to know
about a class.

In Groovy, a class/object can change during runtime in ways that are impossible in
Java. For example, it’s possible to add new methods to a Groovy object (that weren’t
in its source code), delegate existing methods to other objects, or even create com-
pletely new classes during runtime out of thin air. If you thought that Java introspection
was a fancy trick, Groovy has a complete repertoire of magic tricks that will leave your
head spinning with all the possibilities.

Fortunately, these Groovy features aren’t essential for unit tests, so you don’t need
to be overwhelmed with too much information while you’re learning Spock. If you decide
to use Groovy in production code and not just Spock tests, some of its capabilities
will certainly amaze you if you’ve never worked with a dynamic language before.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

http://en.wikipedia.org/wiki/Duck_typing

34 CHAPTER 2 Groovy knowledge for Spock testing

Fi
pri

sem

Main
w

J

Using
2.1.1 Groovy as a companion to Java

Your first contact with Groovy is probably with the new syntax. Sometimes when I look
at Groovy code, I think the syntax is a subset of Java, because Groovy does away with
many redundant Java features. Other times I think that Groovy syntax is a superset of
Java because it adds capabilities into existing well-known Java structures.

 The fact is that Groovy code is more expressive. I promised in the previous chapter
that writing your unit tests in Groovy would result in less code than Java. Now it’s time
to look at this promise.

Let’s start with the Groovy basics: automatic creation of getters and setters as well as
default visibility modifiers, as shown in the next listing.

class Person {
 String firstName
 String lastName
 int age
}

class GettersSettersDemo {

 public static void main(String[] args)
 {
 Person person = new Person()
 person.setFirstName("Lyta")
 person.setLastName("Alexander")

 System.out.println("Person first name is
 "+person.getFirstName())
 System.out.println("Person last name is "+person.getLastName())
 }
}

As you can see in this listing,

■ Classes are public by default.
■ Fields are private by default.

How to use the code listings

You can find almost all this book’s code listings at https://github.com/kkapelon/java-
testing-with-spock. For brevity, the book sometimes points you to the source code
(especially for long listings).

I use the Eclipse IDE in my day-to-day work, as shown in the screenshots throughout
the book. You can find specific instructions for installing Spock (including the optional
Groovy installation) and the Eclipse IDE (plus some information on alternative IDEs)
in appendix A.

Listing 2.1 Groovy class conventions

Contents of file
Person.groovyelds are

vate, no
icolons.

Contents of file
GettersSettersDemo.groovy

 method
ritten in
ava-like
manner

Creating a class
just like Java

Using the automatically
generated setter

the automatically
generated getter
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

https://github.com/kkapelon/java-testing-with-spock
https://github.com/kkapelon/java-testing-with-spock

35What you need to know about Groovy

person
be

uts
ole.
■ Getters and setters are automatically created during runtime and thus don’t
need to be included in the class declarations.

■ Semicolons are optional and should only be used in case of multiple statements
in the same line.3

These are some of the basic conventions that allow Groovy to cut back on the amount
of boilerplate. The biggest gain comes from the removal of getters and setters. You’re
free to define a getter/setter if you need to implement it in a different way than the
default. Even though the Person.groovy class is written in idiomatic Groovy, the
GettersSettersDemo is still Java-like.

 You can reduce even further the amount of code by using the Groovy way of field
accessing, as shown in the following listing.

class GettersSettersDemo2 {

 public static void main(String[] args)
 {
 Person person = new Person()
 person.firstName = "Marcus"
 person.lastName = "Cole"

 println("Person first name is "+person.firstName)
 println("Person last name is "+person.lastName)
 }
}

As seen in this listing, Groovy not only supports the autogeneration of getters and set-
ters, but also allows using only the name of the field instead of the method. The getter
or the setter is implicitly called according to the surrounding context. Finally, as a short-
cut to System.out.println, Groovy makes available the println method to any object.

 You’re not finished yet. You can further refine the code by completely removing
the main method and employing Groovy strings to finally reach the state of idiomatic
Groovy shown in the next listing.

class Person {
 String firstName
 String lastName
 int age
 String rank
}

Person person = new Person()
person.firstName = "Susan "

3 I’m personally against writing multiple statements in the same line.

Listing 2.2 Groovy field conventions

Listing 2.3 A complete Groovy script

This still calls
person.setFirstName()
behind the scenes.

This still calls
.getFirstName()
hind the scenes.

All Groovy objects
inherit the println
method that outp
messages to cons

The Person class is defined in the
file GettersSettersDemo3.groovy.

All code outside the class
is the “main” method.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

36 CHAPTER 2 Groovy knowledge for Spock testing

Parent
are opt
for no

met

va
person.lastName = "Ivanova"
person.rank = "Commander "

println "Person first name is $person.firstName"
println "Person last name is $person.lastName"
println "Person rank is $person.rank"

In Groovy, the class name isn’t required to match the name of the source file. The
main method is also optional. All code that’s in the top level of the file is treated as a
Groovy script. You can completely discard the helper class and use a single Groovy file
that holds both the declaration of the class and its usage.

 The last piece of the puzzle is the way println is structured. Here I use the inter-
polation capability of Groovy. The property after the $ is evaluated and inserted
directly into the string (which is a Groovy string, as you’ll see later in this chapter).
Note that this capability is possible on all strings, not only for those that are printed to
the console. Also Groovy makes parentheses optional when calling a method with at
least one argument.

 At this point, you should already see the benefits of Groovy as far as the amount of
code is concerned. The following listing shows a complete Spock test that showcases
all Groovy features explained so far. It’s a trivial test that will verify a custom string rep-
resentation of the Person class.

class PersonSpec extends spock.lang.Specification{

 def "Testing getters and setters"() {
 when: "a person has both first name and last name"
 SimplePerson person = new SimplePerson()
 person.firstName = "Susan"
 person.lastName = "Ivanova"

 then: "its title should be surname, name"
 person.createTitle() == "Ivanova, Susan"
 }

}

class SimplePerson {
 String firstName
 String lastName

 String createTitle()
 {
 return "$lastName, $firstName"
 }
}

Here you define a single Groovy class that contains the Spock test and the class under
test for demonstration purposes. The method that’s tested uses string interpolation:
the fields are replaced with their value inside the resulting text.

Listing 2.4 A Spock test using concise Groovy code

The $ character performs string
interpolation as JSP/JSTL does.

heses
ional
nvoid
hods.

Assigning
lues to fields

Spock assertion

Class defined in the
same file as Spock test

Method that will be tested

String interpolation
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

37What you need to know about Groovy
 In this Spock test, both the class under test and the unit test itself are written in
Groovy. In the next section, you’ll see how Spock tests that are written in Groovy can
test Java code.

2.1.2 Accessing Java classes in a Groovy script

In the previous section, you got a small taste of how easy it is to write Groovy code
compared to the Java verbose approach. The comparison focused on the syntax of the
language. This section compares the way these languages interact during runtime.

 Groovy comes with its own com-
piler (called groovyc) that reads
source Groovy files and creates Java
bytecode. That’s all you need to
know in order to understand how
Groovy works with Java. As figure 2.1
shows, Groovy source code is con-
verted to the same bytecode already
used by Java files.

 Then the bytecode is loaded in
the JVM exactly like any other Java
class. The JVM doesn’t care about
the original source of a class. It runs
each Java or Groovy class in the same way, offering them both the same capabilities
and services.

 This is an important point to remember. Even though as a developer you may feel
that Groovy is much more flexible than Java or that Groovy does too many things
behind the scenes, it all boils down to the same bytecode of the same JVM. There isn’t
a “Groovy virtual machine.” The Groovy runtime is a single Java archive (JAR) file.
Adding Groovy capabilities into an existing Java project is as simple as adding the
Groovy JAR into the classpath. Normally, your build system takes care of this inclusion,
making the process of running both Groovy and Java code in the same project an
effortless task.

 After all is said and done, creating and accessing Java objects in Groovy code is
exactly the same as in Java code.4 The following listing shows a Spock test (in Groovy);
the class under test is written with Java.

public class MilitaryPerson {
 private String firstName;
 private String lastName;
 private String rank;

4 It’s also possible to access Groovy code from Java code, but this isn’t needed for Spock testing.

Listing 2.5 Creating and using a Java class from Groovy

Java source code

Class (bytecode)

Compile

Groovy source code

Class (bytecode)

Compile

Java virtual machine

Figure 2.1 Both Java and Groovy compile in Java
bytecode.

Class under
test is Java code.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

38 CHAPTER 2 Groovy knowledge for Spock testing

Spock
in Gro

Creatin
i

ac
als

Ja
way

 declari
 public String createTitle()
 {
 return lastName+", "+firstName +" ("+rank+")";
 }

 public String getFirstName() {
 return firstName;
 }
 ...more getters and setters here..
}

class MilitaryPersonSpec extends spock.lang.Specification{

 def "Testing getters and setters of a Java class"() {
 when: "a person has both first, last name and rank"
 MilitaryPerson person = new MilitaryPerson()
 person.firstName = "Susan"
 person.lastName = "Ivanova"
 person.setRank("Commander");

 then: "its title should be surname, name (rank)"
 person.createTitle() == "Ivanova, Susan (Commander)"
 }

}

That’s the beauty of Java and Groovy integration. Everything works as expected:

■ Groovy code can create Java classes with the new keyword.
■ Groovy code can call Java methods.
■ Groovy classes can extend Java classes.
■ Groovy classes can implement Java interfaces.

It doesn’t get any easier than this!

2.1.3 Declaring variables and methods in Groovy

One of the first questions every Java developer asks when seeing a Spock test is about
the use of the def keyword. This keyword is one of the central concepts of Groovy that
characterize it as dynamically typed.5 You can find all the details in the Groovy specifi-
cation if you feel adventurous, but for the purpose of writing Spock tests, the meaning
of def is “I won’t declare a type here; please do it automatically for me.”

 Thus in Groovy the following listing is possible.

String firstName = "Susan"
def lastName = "Ivanova"
def fullName = "$firstName $lastName"
println fullName

5 Or optionally typed, because Groovy still supports the Java way of explicit types.

Listing 2.6 Groovy optional typing in variables

 Java method that
will be tested

test
ovy

g a Java class
n Groovy code

Accessing Java fields using
Groovy conventions

Java way for
cessing fields is
o still available.

Calling a Java method
in Groovy code

va
 of
ng

Groovy optional typing fullName is
also a string.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

39What you need to know about Groovy

l

As shown in this listing, Groovy supports the usual Java way of declaring things. It also
adds its own way, with the type of the object inferred by the context. An alternative way
to run Groovy files is using the command line and the groovy executable. The listing
results in this output:

> groovy DefDemo.groovy
Susan Ivanova

It’s interesting to note that the def keyword can also be applied in methods, as shown
in the following listing. This can trim the size of Spock test methods even further
(after omitting the visibility modifier).

def createName(String firstName,String lastName)
{
 return "$lastName, $firstName"
}

def createMilitaryName(def firstName,def lastName, def rank)
{
 return "$lastName, $firstName ($rank)"
}

def fullName = createName "Susan","Ivanova"
println fullName

def militaryName = createMilitaryName "Susan","Ivanova","Commander"
println militaryName

This listing outputs the following:

> groovy DefDemo2.groovy
Ivanova, Susan
Ivanova, Susan (Commander)

Remember that Groovy also supports the Java syntax, so mixing both styles of typing is
easy. You can gradually convert to Groovy syntax when you feel comfortable with this
notation. Now that you know how the def keyword works, you can see in the following
listing how it applies to Spock tests.

Is def like Object?

When you’re learning Groovy, it’s easy to think that def is an alias for Object. Even
though it might seem to work that way, it doesn’t, and you can find some big differences
with Java if you use def in the wrong way in production code. A suggestion that many
Groovy developers embrace is to always declare the type of a variable if you know
how it will be used. The same suggestion is true for Spock tests, too.

Listing 2.7 Groovy optional typing in methods

Using def for
return type

Using def for
arguments as wel

Parentheses are optional if at
least one argument is used.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

s

S

40 CHAPTER 2 Groovy knowledge for Spock testing

class DefDemoSpec extends spock.lang.Specification{

 public void trivialSum1() {
 when: "number is one"
 int number =1;

 then: "number plus number is two"
 number + number ==2;
 }

 def trivialSum2() {
 when: "number is one"
 int number = 1

 then: "number plus number is two"
 number + number ==2
 }

 def "Testing a trivial sum"() {
 when: "number is one"
 def number =1

 then: "number plus number is two"
 number + number ==2
 }
}

As shown in this listing, the def keyword is part of standard Groovy. It’s also possible to
use full strings for method names. The final result is the Spock DSL for unit tests (and
not a standard Groovy feature). I’ve written the same unit test in three possible ways.
Even though the syntax is different, they run in exactly the same way as far as Spock is
concerned.

2.1.4 Writing less code with Groovy

Groovy still has many tricks under its belt for reducing Java code. For example, the
return keyword is also optional. The last evaluated statement in a method is the result
of the method in that case. In a similar manner, the def keyword in arguments is also
optional. The example from listing 2.7 can be further simplified by using these two
rules.

 Groovy syntax is indeed a refreshing experience when you come from the Java
world. Several things that Java considers essential are simply discarded by Groovy, free-
ing the programmer from boilerplate code that can be automatically created or
understood by the runtime.

 While learning Spock, you’ll find several ways to reduce the amount of code, but
this doesn’t need to happen right away. My proposal is to follow a gradual learning
curve, as shown in figure 2.2.

Listing 2.8 Using dynamic typing in Spock methods

Java way of
declaring methods

Still using
emicolons

Groovy way of
method declaration

emicolons
optional

Full string for
method name

Optional typing
of Groovy
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

41Groovy Power assert as a replacement for JUnit asserts
You already know Java. Your first Spock tests should focus on understanding Spock
concepts, so continuing to write “Java-like” Groovy is fine. Once you understand how
Spock works, you can apply the shortcuts Groovy offers (as illustrated in the previous
sections) to reduce the amount of code and simplify your Spock tests. When you’re
confident using Spock, you can apply core Groovy techniques (for example, closures)
to write idiomatic Groovy and get completely out of the Java mindset.

 A common mistake of Java programmers is writing Spock tests using example code
without understanding which feature is Spock-specific and which is offered by Groovy.
This can make your Spock journey harder than it should be, so don’t fall into that
trap. Make sure that you know how Spock works before applying cool Groovy tricks
that dazzle you.

 You’ve seen the basic syntax of Groovy and use of the def keyword. Now it’s time to
explore Spock asserts.

2.2 Groovy Power assert as a replacement for JUnit asserts
With the def mystery solved, the second striking feature of Spock tests is the lack of
assert statements for evaluating results. All JUnit tests end with one or more assert
statements6 that define the expected result of the computation. If the expected result
doesn’t match the actual one, the test will fail. JUnit comes with an extensive API for
assert statements, and it’s considered a good practice to create your own extensions,
dealing with the business domain of your application.

 I mentioned in the previous chapter that unlike JUnit, Spock doesn’t have assert
methods. In this section, you’ll see how Spock deals with assertions and how they can
help you in case of test failures. I’ll also continue with the general theme of this chap-
ter: reducing the amount of code needed when using Groovy instead of Java.

2.2.1 Understanding how Groovy handles asserts

In theory, Groovy asserts function in a similar way to Java asserts. They expect a Bool-
ean variable (or an expression that evaluates to a Boolean), evaluate it, and if it’s true,

6 Not having an assert (or verify) statement is a huge antipattern, because the test never fails.

Java

Java-like Groovy

Concise Groovy

Idiomatic Groovy

Figure 2.2 Suggested path for better Spock tests
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

42 CHAPTER 2 Groovy knowledge for Spock testing
the assertion passes successfully. Spock runs assertions in the same way. If all assertions
pass, the unit test succeeds.

 In practice, however, Java is very strict regarding true/false. Only Boolean vari-
ables can be tested for assertions. Groovy takes a more relaxed7 approach to this,
allowing all objects to be treated as Booleans.

 Groovy treats all objects8 as true unless

■ The object is an empty string.
■ The object is a null reference.
■ The object is the zero number.
■ The object is an empty collection (map, list, array, and so on).
■ The object is the false Boolean (obviously).
■ The object is a regex matcher that fails.

The following listing shows some examples, with Groovy assertions demonstrating the
rules of Groovy true/false.

assert true
assert !false

assert true || false
assert true && !false

String firstName = "Susan"
assert firstName

def lastName = "Ivanova"
assert lastName

String empty = ""
assert !empty

Person person = new Person()
assert person;

Person nullReference = null
assert !nullReference;

int answerToEverything = 42
assert answerToEverything

int zero=0
assert !zero

Object[] array= new Object[3];
assert array

7 Or error-prone, if you wish. Some of the old C traps are now possible with Groovy as well (but not all).
8 Closures are also “true.”

Listing 2.9 Groovy can convert everything to a Boolean

Boolean variables
work like Java.

A nonempty string is true.

An empty string is false.

A valid reference is true.

A null reference is false.

A nonzero number is true.

A zero number is false.

A nonempty collection is true.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

43Groovy Power assert as a replacement for JUnit asserts

Creatio
reg

expres
Object[] emptyArray= new Object[0];
assert !emptyArray

Pattern myRegex = ~/needle/
assert myRegex.matcher("needle in haystack")
assert !myRegex.matcher("Wrong haystack")

println "Script has finished because all asserts pass"

If you run the preceding example, all asserts evaluate to true, and the final line is
printed in the console.

GROOVY TRUTH

The way Groovy handles true/false statements (called Groovy truth in Groovy par-
lance) can be used in Spock to trim the assert statement into a shorter form instead of
converting it explicitly to Boolean variables.

The next listing presents a Spock example with both approaches, using both an
explicit Boolean evaluation (Java) and automatic “casting” to true/false (Groovy).
The class under test is a trivial string tokenizer that counts word occurrences.

class GroovyTruthSpec extends spock.lang.Specification{

 def "demo for Groovy truth"() {
 when: "a line of text is processed"
 WordDetector wordDetector = new WordDetector();
 wordDetector.parseText("Understanding is a three edged sword:
 your side, their side, and the truth");

 then: "word frequency should be correct"
 wordDetector.wordsFound() > 0
 wordDetector.duplicatesFound().size() > 0

 wordDetector.wordsFound()
 wordDetector.duplicatesFound()
 }
}

As an exercise, locate examples in chapter 1 that don’t use Groovy truth rules in the
assert statements and rewrite them now that you know that Groovy can convert every-
thing to a Boolean variable.9

Fun with Groovy truth

This is valid Groovy code: boolean flag = -45. Even though this line doesn’t even
compile in Java, in Groovy the number –45 is a nonzero number, and therefore the
variable flag is now true.

Listing 2.10 Groovy truth used in Spock tests

9 Groovy strings also get an additional toBoolean() method that treats only true, y, and 1 as true.

An empty collection is false.
n of
ular
sion

Regex is true if it
matches at least once.

Class under test
is a Java class.

Calling a Java
method

Using Java-like asserts with
explicit conversion to Boolean

Any positive number is
automatically seen as true.

Any nonempty
collection is

automatically
seen as true.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

44 CHAPTER 2 Groovy knowledge for Spock testing
2.2.2 Using Groovy assertions in Spock tests

In the previous section, you saw how to use Groovy truth to simplify your assert state-
ments. I admit that this is another feature that looks mainly like sugarcoating, and you
might not be impressed by the amount of code reduced. This is understandable, but
the advantage of Groovy assertions isn’t the application of Groovy truth rules.

 The killer feature of Groovy (and therefore Spock) is the information it gives when
an assert fails. You’ve seen some hints of this in chapter 1, using assertions that expect
numbers (code listings 1.2 and 1.3). In complex expressions, Groovy shows all inter-
mediate results. Figure 2.3 shows the Eclipse JUnit window in both cases, but you get
similar output if you run your unit tests in the command line or any other compatible
tool with JUnit.

The magic of this feature is that it works with all objects and not just primitives.
Groovy has no such distinction: everything is an object as far as Groovy is concerned.

What == means in Groovy

In Groovy, the == operator isn’t testing identity like Java. It calls the equals() method
of the object. Identity in Groovy is handled by the is keyword. Thus
object1.is(object2) is the Groovy way of testing identity. You should be aware of
this difference if you use objects in both sides of the assert statement. (If you perform
only simple assertions with scalar values—as you should—then this difference
doesn’t matter.)

JUnit asset

Groovy assert

Figure 2.3 Groovy assert shows much more information than a JUnit assert.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

45Groovy Power assert as a replacement for JUnit asserts
Figure 2.4 is a more complex example of a failed Groovy assert with lists. Again notice
how Groovy shows all intermediate operations, whereas JUnit reports only the final
result.

 A Groovy Power assert works for your own objects as well, as shown in figure 2.5.
 This Spock feature is crucial for continuous delivery environments. As a developer,

you can understand exactly what goes wrong when a test fails. A well-configured build
server keeps all the results from unit tests and provides reports for the failed ones.

JUnit asset

Groovy assert
Figure 2.4 Groovy assert with
lists compared to JUnit assert

JUnit asset

Groovy assert
Figure 2.5 Groovy assert with the
Java class shown in listing 2.10
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

46 CHAPTER 2 Groovy knowledge for Spock testing
Because Groovy (and by extension Spock) shows you the running context, you can, in
several cases, fix the bug right away instead of spending time with a debugger in order
to reproduce it. For enterprise environments in which running an integration test is a
lengthy process, this extra context for failing tests is a time-saver that can easily per-
suade any Java developer to switch from JUnit.

 I’ll show you how to further enhance the output of Groovy Power asserts in chapter
4. For now, I’ll continue with some useful Groovy features that have helped me in sev-
eral Spock tests.

2.3 Groovy features useful to Spock tests
Now you have all the essential knowledge needed in order to write your own Spock
assertions. The rest of this chapter continues with the theme of reducing unit test
code size with the expressiveness provided by Groovy compared to Java. All the follow-
ing techniques are optional, and you can still use normal Java code in your Spock tests
if your organization needs a more gradual change. Each application is different, so it’s
hard to predict all the ways that Groovy can help you with unit tests. The following
selection is my personal preference.

2.3.1 Using map-based constructors

If there’s one feature of Groovy that I adore, it’s object creation. Most unit tests create
new classes either as test data or as services or helper classes used by the class under
test. In a large Java application, a lot of statements are wasted creating such objects.
The next listing presents a Java example of testing a class that takes as its argument a
list of persons.

Employee trainee = new Employee();
trainee.setAge(22);
trainee.setFirstName("Alice");
trainee.setLastName("Olson");
trainee.setInTraining(true);

Employee seasoned = new Employee();
seasoned.setAge(45);
seasoned.setFirstName("Alex");
seasoned.setMiddleName("Jones");
seasoned.setLastName("Corwin");

List<Employee> people = Arrays.asList(trainee,seasoned);

Department department = new Department();
department.assign(people);
[...rest of test]

Java needs more than 10 statements to create the two objects that will be used for test
input. This boilerplate code is too noisy when compared with the code that tests the
Department class.

Listing 2.11 JUnit test with multiple object creation statements

Java object that will be
used as test input

Filling of fields one by one

Second Java object
for test input

Filling of different
fields one by one

Class under
test

Test data is used.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

47Groovy features useful to Spock tests

Another
object

different
va

Groovy
create

initia
a m
EASY OBJECT CREATION WITH GROOVY CONSTRUCTORS

This is a well-known problem for Java developers. Sometimes special constructors are
created for business domain objects to allow for easy testing. I consider this an antipat-
tern. This technique not only shifts verbosity from unit tests to core code, but also has
its own shortcomings in the case of multiple constructors. In the preceding example,
the Employee class would be polluted with at least two constructors (one that sets the
trainee flag and one that ignores it).

 Groovy comes to the rescue! Map-based constructors are autogenerated for your
Java objects, allowing your Spock tests to initialize any number of fields as well, as
shown in the following listing.

when:
Employee trainee = new
 Employee(age:22,firstName:"Alice",lastName:"Olson",inTraining:true)
Employee seasoned = new
 Employee(middleName:"Jones",lastName:"Corwin",age:45,firstName:"Alex")

List<Employee> people = Arrays.asList(trainee,seasoned)

Department department = new Department()
department.assign(people)
[...rest of test]

Without changing a single line of Java code in the Employee class file, I’ve used the
map-based constructors, whereby each field is identified by name and the respective
value is appended after the semicolon character. Notice that the order of the fields
and the set of the fields are completely arbitrary. With this technique,10 you can create
a Java object with all possible combinations of its fields in any order that you like!

2.3.2 Using maps and lists in Groovy

The syntax shown in the previous section isn’t specific to constructors. This is the
Groovy way of initializing a map. You can use it for creating a map in a single state-
ment. The following listing presents an example.

Map<String,Integer> wordCounts = new HashMap<>();
wordCounts.put("Hello",1);
wordCounts.put("Java",1);
wordCounts.put("World",2);

Map<String,Integer> wordCounts2 = ["Hello":1,"Groovy":1,"World":2]

Listing 2.12 Spock test with map-based constructors

10 Groovy supports even-more-concise constructors. They sacrifice clarity, so I refrain from showing them here.

Listing 2.13 Groovy versus Java maps

Java object created with
specific field values

Java
with
field
lues

Class under test
Test data is used.

Manually filling a
map (Java way)

 can
and
lize
ap.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

48 CHAPTER 2 Groovy knowledge for Spock testing

t
Java

Creati
a list wi

 data
Groo
You can create any kind of map like these, even those with keys and values that are
classes on their own. For Groovy, it makes no difference (see the following listing).

Employee person1 = new
 Employee(firstName:"Alice",lastName:"Olson",age:30)
Employee person2 = new
 Employee(firstName:"Jones",lastName:"Corwin",age:45)

Address address1 = new Address(street:"Marley",number:25)
Address address2 = new Address(street:"Barnam",number:7)

Map<Employee,Address> staffAddresses = new HashMap<>();
staffAddresses.put(person1, address1);
staffAddresses.put(person2, address2);

Map<Employee,Address> staffAddresses2 =
 [(person1):address1,(person2):address2]

As shown in listing 2.13, when classes are used for the keys of the map, you need to use
extra parentheses. If you don’t, the classes are assumed to be strings. Also, this concise
Groovy syntax creates by default a LinkedHashMap.

 In a similar way to maps, Groovy supports a concise syntax for lists. If you’ve ever
wondered why it’s so easy to create an array in Java in a single statement but not a list,
you’ll be happy to discover that Groovy has you covered. The following listing shows
the comparison between Groovy and Java lists.

List<String> races = Arrays.asList("Drazi", "Minbari", "Humans")

List<String> races2 = ["Drazi", "Minbari", "Humans"]

assert races == races2

String[] racesArray = ["Drazi", "Minbari", "Humans"]
String[] racesArrayJava = {"Drazi", "Minbari", "Humans"}

Because the syntax of arrays and lists is similar in Groovy, you might find yourself
using arrays less and less as you gain experience with Groovy. Notice that the usual way
of declaring arrays in Java is one of the few cases where valid Java is invalid Groovy. If
you try to create an array in Groovy by using the Java notation, you’ll get an error,
because Groovy uses the same syntax for closures, as you’ll see later in this chapter.

Listing 2.14 Groovy maps with nonscalar keys and values

Listing 2.15 Groovy versus Java lists

Creating a Java
object by using
map-based
constructors

Filling a map manually (the Java way)

Creating and initializing
a map (the Groovy way)

Creating a lis
with data in

ng
th
 in
vy

The == operator tests
equality in Groovy and not
identity. This assert passes.

Creating an array
with data in Groovy

This is valid Java,
but invalid Groovy.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

49Groovy features useful to Spock tests

of
ed

Java c
under

Java w
of getti

 an eleme

Groovy w
of addi
elemen

Java w
of inserti

 into m
 Using the knowledge you’ve gained from the preceding sections, you can com-
pletely rewrite the JUnit test from listing 2.11, as the following listing shows.

List<Employee> people = [
 new Employee(age:22,firstName:"Alice",lastName:"Olson",
 inTraining:true),
 new Employee(middleName:"Jones",lastName:"Corwin",age:45,
 firstName:"Alex")
]

Department department = new Department()
department.assign(people)
[...rest of test]

By following Groovy conventions, I’ve replaced 11 Java statements with 1. The unit test
is much more readable because it’s clearly split as far as test data creation and test data
usage are concerned.

ACCESSING LISTS IN GROOVY BY USING ARRAY INDEX NOTATION

So far, I’ve demonstrated only how maps and lists are initialized. Let’s see how Groovy
improves their usage as well, as shown in the next listing.

List<String> humanShips = ["Condor","Explorer"]
assert humanShips.get(0) == "Condor"
assert humanShips[0] == "Condor"

humanShips.add("Hyperion")
humanShips << "Nova" << "Olympus"
assert humanShips[3] == "Nova"
assert humanShips[4] == "Olympus"

humanShips[3] = "Omega"
assert humanShips[3] == "Omega"

Notice how writing and reading to a list uses the same syntax, and only the context
defines the exact operation. Again, this syntax is optional, and you’re free to use the
Java way of doing things even in Spock tests.

 Groovy offers the same array-like syntax for maps as well, as shown in the following
listing.

Map<String,String> personRoles = [:]
personRoles.put("Suzan Ivanova","Lt. Commander")
personRoles["Stephen Franklin"]= "Doctor"

Listing 2.16 Creating Groovy lists and maps in test code

Listing 2.17 Using Groovy lists

Listing 2.18 Using Groovy maps

Groovy initialization
a list, using map-bas
constructor objects

lass
test

Use of test data

Creating a list
with two elementsay

ng
nt

Groovy way of
accessing a list

Java way of adding
a new element

ay
ng
ts

Groovy way of
replacing an element

Creating an empty
map in Groovyay

ng
ap

Groovy way of
inserting into map
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

50 CHAPTER 2 Groovy knowledge for Spock testing

Groovy
of acce

ith
s

Gr
w

acce

Usin
fo

expres
assert personRoles.get("Suzan Ivanova") == "Lt. Commander"
assert personRoles["Stephen Franklin"] == "Doctor"

personRoles["Suzan Ivanova"]= "Commander"
assert personRoles["Suzan Ivanova"] == "Commander"

Lists and maps are one of the many areas where Groovy augments existing Java collec-
tions. Groovy comes with its own GDK that sits on top of the existing JDK. You should
spend some time exploring the GDK according to your own unit tests and discovering
more ways to reduce your existing Java code.

 So far, you’ve seen how Groovy enhances classes, fields, and collections. Let’s see
how Groovy strings compare to Java strings.

2.3.3 Interpolating text with Groovy strings

I demonstrated Groovy strings (GStrings) at the beginning of this chapter by taking a
single Java class and converting it to idiomatic Groovy in a gradual way. At the most
basic level, Groovy strings allow for quick text templates of object properties, but they
also can handle full expressions, as shown in the following listing.

SimpleDepartment sales =
 new SimpleDepartment(name:"Sales",location:"block C")
SimpleEmployee employee =
 new SimpleEmployee(fullName:"Andrew Collins",age:37,department:sales)

System.out.println("Age is "+employee.getAge())
println "Age is $employee.age"

System.out.println("Department location
 is at "+employee.getDepartment().getLocation())
println "Department location is at $employee.department.location"

println "Person is adult ${employee.age > 18}"
println "Amount in dollars is \$300"
println 'Person is adult ${employee.age > 18}'

When run, this code prints the following:

>groovy GroovyStrings.groovy
Age is 37
Age is 37
Department location is at block C
Department location is at block C
Person is adult true
Amount in dollars is $300
Person is adult ${employee.age > 18}

Groovy string interpolation is certainly powerful, but for unit tests, their multiline
capability is more interesting. Similar to other scripting languages, Groovy allows you
to split a big string with newlines, as shown in the next listing.

Listing 2.19 Using Groovy strings

Java way of
accessing map way

ssing
map Groovy way of

replacing element

Creating Java objects w
map-based constructor

Java way of
accessing fields

oovy
ay of
ssing
fields

g {}
r full
sions

Escaping the
$ character

Disabling evaluation
altogether with single quotes
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

51Reading a test dataset from an external source

Cr
mult

def "Another demo for Groovy multiline strings"() {
 when: "a paragraph is processed"
 String input = '''I want you to know you were right. I didn't want \
 to admit that. Just pride I guess. You get my age, you \
 get kinda set in your ways. It had to be \
 done. Don't blame yourself for what happened later.'''
 WordDetector wordDetector = new WordDetector();
 wordDetector.parseText(input);

 then: "word count should be correct"
 wordDetector.wordsFound() == 34
 }

This is a great feature for unit tests that require text input of three to four lines that
can be embedded directly on the source file. Multiline strings also support text inter-
polation if you use double quotes instead of single, but inside unit tests, it’s clearer if
they’re pure text (without text interpolation). For more lines of text, I also advise
using a separate text file, as demonstrated in the next section.

2.4 Reading a test dataset from an external source
One of the challenges I face when creating a new unit test (especially in test-driven
development, as the test is created before the implementation code) is finding correct
test input. For basic unit tests in which only a single class is tested, you might get away
with trivial data created on the spot.

 For integration tests, however, which test multiple code modules, your selection of
test data needs more thought. Once you have enough tests for the happy paths of your
code, it’s time to examine all corner cases and strange scenarios. Creating effective
test data is a separate skill of its own, but a good source of such data can be found on
an existing running system. Often, test data can also be obtained from issues reported
by the users of the software. These types of data are as real as they get, so they’re excel-
lent candidates for your unit tests.

 Unfortunately, useful test data is often trapped in the transport medium (for
example, XML files) that must be processed before they can be used directly in a unit
test. Groovy comes with excellent facilities for extracting test data from external files,
and you should take advantage of these techniques in your Spock tests. Using the Java
approach will also work, but again in a much more verbose way.

2.4.1 Reading a text file

Reading a text file in Java usually requires a basic understanding of buffered readers or
any other Java file API that was added with each new Java version.11 Groovy does away
with all the unneeded craft and allows you to read a file in the simplest way possible:

String testInput = new File("src/test/resources/quotes.txt").text

Listing 2.20 Using Groovy multiline strings

11 Or coming from an external library such as Apache Commons.

eation of a
iline string

Using the multiline string
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

52 CHAPTER 2 Groovy knowledge for Spock testing

Re
whol
A normal file is opened. Groovy adds the .getText() method that reads its text. You
could also specify the encoding if it’s not the default. This simplicity is handy because
it can be used straight in a Spock test. The following listing shows an example.

def "demo for reading a text file"() {
 when: "a paragraph is processed"
 WordDetector wordDetector = new WordDetector();
 String inputText = new File("src/test/resources/quotes.txt").text
 wordDetector.parseText(inputText);

 then: "word frequency should be correct"
 wordDetector.wordsFound() == 78

}

def "demo for reading a text file line by line"() {
 when: "a paragraph is processed"
 List<String> inputText = new
 File("src/test/resources/quotes.txt").readLines()
 WordDetector wordDetector = new WordDetector();
 for(String line:inputText)
 {
 wordDetector.feedText(line)
 }

 then: "word count should be correct"
 wordDetector.wordsFound() == 78
}

Notice the expressive code. It has no boilerplate for autoclosing streams or anything
like that. I’ll show you more examples of file reading in chapter 5, where Groovy code
is both shorter and easier to understand than the Java way. In chapter 5, I’ll show you
data-driven Spock tests in which the same test is evaluated for multiple (similar) sets of
input test data.

2.4.2 Reading an XML file

XML is the lingua franca of large enterprise applications. One of the original market-
ing points of Java was the handling of XML files. Business web services usually produce
some sort of XML dialect, and several custom file formats are XML files under the
hood. As with Java, Groovy supports several ways, but explaining them all is outside
the scope of this chapter.

 This section demonstrates the XmlSlurper way of reading XML files with Groovy.
You can use this technique either when you want to read test data from an XML file, or
when your Java class writes XML and you want to quickly verify its correctness.12

Listing 2.21 Reading test data from a file in a Spock test

12 For more-complex XML verification cases, you can also use a dedicated XML diff library such as XMLUnit.

ading the
e text file

Reading a file
line by line
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

53Reading a test dataset from an external source

ct

Acces
an

prop nt

nt
 Let’s assume that your XML file is the following:

<staff>
 <department name="sales">
 <employee>
 <firstName>Orlando</firstName>
 <lastName>Boren</lastName>
 <age>24</age>
 </employee>
 <employee>
 <firstName>Diana</firstName>
 <lastName>Colgan</lastName>
 <age>28</age>
 </employee>
 </department>
</staff>

The next listing provides the respective Groovy code.

def xmlRoot = new
 XmlSlurper().parse('src/main/resources/employee-data.xml')
assert xmlRoot.department.size() ==1
assert xmlRoot.department.@name =="sales"
assert xmlRoot.department.employee.size() ==2
assert xmlRoot.department.employee[0].firstName =="Orlando"
assert xmlRoot.department.employee[0].lastName =="Boren"
assert xmlRoot.department.employee[0].age ==24
assert xmlRoot.department.employee[1].firstName =="Diana"
assert xmlRoot.department.employee[1].lastName =="Colgan"
assert xmlRoot.department.employee[1].age ==28

Here you can see the expressive Groovy power in all its glory. Reading the XML file is a
single line. Then you use an XPath-like expression to retrieve XML content. I won’t
even bother to write the Java code for the same example. XML reading (and writing)
in Java has always contained boilerplate code, which is taken for granted by Java devel-
opers. Groovy discards all this and keeps only the substance.

2.4.3 Reading a JSON file

Groovy reads JavaScript Object Notation (JSON) in a similar way to how it reads XML.
XML might be dominant in legacy enterprise applications, but newer web services
tend to use JSON. Groovy covers them both with ease.

 Let’s assume that your JSON file is the following:

{
 "staff": {
 "department": {
 "name": "sales",
 "employee": [

Listing 2.22 Reading XML in Groovy

Creating the
XmlSlurper obje

Checking the number
of children XML nodessing

XML
erty Accessing XML conte

of the first child

Accessing XML conte
of the second child
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

54 CHAPTER 2 Groovy knowledge for Spock testing

Acces
Json

Chec
the siz
JSon a

ent
ay

Acces
sec

elemen
the a
 {
 "firstName": "Orlando",
 "lastName": "Boren",
 "age": "24"
 },
 {
 "firstName": "Diana",
 "lastName": "Colgan",
 "age": "28"
 }
]
 }
 }
}

The next listing presents the respective Groovy code (almost the same as the XML one).

def jsonRoot =
 new JsonSlurper().parse(new
 File('src/main/resources/employee-data.json'))
assert jsonRoot.staff.department.name =="sales"
assert jsonRoot.staff.department.employee.size() ==2
assert jsonRoot.staff.department.employee[0].firstName =="Orlando"
assert jsonRoot.staff.department.employee[0].lastName =="Boren"
assert jsonRoot.staff.department.employee[0].age =="24"
assert jsonRoot.staff.department.employee[1].firstName =="Diana"
assert jsonRoot.staff.department.employee[1].lastName =="Colgan"
assert jsonRoot.staff.department.employee[1].age =="28"

With Groovy, obtaining test data from JSON is easy. The syntax is even simpler than
XML in some ways.

2.5 Advanced Groovy features useful to testing
I hope that this chapter serves as a gentle introduction to Groovy, and that if you were
scared by the syntax of Spock tests in chapter 1, you’re now more confident about how
things work. In several ways, Groovy simplifies Java code by leaving only the gist and
discarding the bloat.

 Explaining all the things Groovy can do in a single chapter is impossible. Groovy
has several advanced constructs for core programming that blow away any Java code
you’ve already seen. This last section presents some advanced concepts that you might
use in your Spock tests.

 Don’t be alarmed if the code shown is more complex than the previous examples.
You can skip this part and come back again when you have more experience with
Groovy and become comfortable with Spock tests. That being said, the following tech-
niques are in no way essential to Spock tests. They have their uses at times, but you
should always make sure that your unit tests aren’t overengineered.

Listing 2.23 Reading JSON in Groovy

Creating the
JsonSlurper objectsing

field

king
e of
rray

Accessing
first elem
of the arr

sing
ond
t of

rray
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

55Advanced Groovy features useful to testing

Using
closur
a met

Creatio
Java c

under
 Don’t fall into the trap of using cool Groovy tricks in Spock tests to impress your
Java friends! Keep Spock tests simple and understandable.

2.5.1 Using Groovy closures

The official Groovy book (Groovy in Action) assigns a whole chapter to explain closures,
so I’m not going to try to do the same in these paragraphs. You might already know clo-
sures from other programming languages.13 If not, spend some time researching them
because they’re universally helpful (even outside the context of Groovy).

 Closures are in many ways similar to methods. Unlike Java methods, they can be
passed around as arguments to other methods or become partially evaluated instead
of called directly. Java 8 also comes with lambda expressions, which serve as a stepping
stone to functional programming concepts. If you’ve already worked with Java 8,
Groovy closures will come naturally to you.

 Closures in Groovy are denoted by the -> character and are contained in {}. The
following listing presents some examples.

Closure simple = { int x -> return x * 2}
assert simple(3) == 6

def simpler = { x -> x * 2}
assert simpler(3) == 6

def twoArguments = { x,y -> x + y}
assert twoArguments(3,5) ==8

Closures are the Swiss army knife of Groovy. They’re used almost everywhere, and it’s hard to
deal with Groovy code without stumbling upon them. Prior to Java 8, they were one of the main
advantages of Groovy over Java, and even after Java 8, they still offer great value and simplicity.
Closures are so powerful in Groovy that you can use them directly to implement interfaces or as
exit points in switch statements.

 The Groovy GDK augments the existing JDK with several new methods that accept
closures for arguments. For example, a handy Groovy method for unit testing is the
every() method available in collections. Assume that you have a Java class that gets a
list of image names from a text file and returns only those that end in a specific file
extension. Closures can be employed in the Groovy assert, as shown in the next listing.

def "Testing Jpeg files"() {
 when: "only jpeg files are selected from a list of filenames"
 FileExtensionFilter myFilter = new FileExtensionFilter()

13 You may have seen function pointers, function references, higher-order methods, and code blocks in other
languages. They’re not, strictly speaking, the same thing as closures, but the main concepts are similar.

Listing 2.24 Groovy closures

Listing 2.25 Using Groovy closures in Spock tests

A closure with full Groovy
notation that doubles its
integer argument

 the
e as
hod Same closure with

concise Groovy. Return
is optional as well.

A closure with
two arguments

n of
lass
test
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

56 CHAPTER 2 Groovy knowledge for Spock testing

will b

u

.closu
each
 myFilter.addValidExtension("jpeg")
 myFilter.addValidExtension("jpg")

 List<String> testInput = ["image1.jpg","image2.png","image3.jpeg",
 "image4.gif","image5.jpg","image6.tiff"]

 List<String> result = myFilter.filterFileNames(testInput)

 then: "result should not contain other types"
 result.every{ filename -> filename.endsWith("jpeg") ||
 filename.endsWith("jpg")}
}

In this Spock test, the assertion is a single line because all elements of the list are
checked one by one automatically by the closure. The closure takes as an argument a
string and returns true if the string ends in jpg (using both three- and four-letter
notations).

 Other methods useful to unit tests (apart from every() shown in the preceding
listing) are as follows:

■ any(closure)—Returns true if at least one element satisfies closure
■ find(closure)—Finds the first element that satisfies closure
■ findAll(closure)—Finds all elements that satisfy closure

You should consult the Groovy official documentation (www.groovy-lang.org/
gdk.html) for more details.

2.5.2 Creating test input with ObjectGraphBuilders

One of the arguments against unit tests (and integration tests, in particular) is the
effort required to come up with “real” test data. In a complex business application, the
data that’s moved around is rarely a single object. Usually it’s a collection of objects, a
tree structure, a graph, or any other complex structure.

 This makes writing integration tests a lengthy process because about 80% of the
code can be consumed by creating the test input for the class under test. Test input
code generation is one of the first candidates for code reuse inside unit tests. In suffi-
ciently large enterprise projects, test input generation might need a separate code
module of its own, outside the production code.

 Groovy to the rescue! Groovy comes with a set of builders that allow you to create
test data by using a fancy DSL. Instead of creating the data manually, you declare the
final result. As an example, assume that your domain contains the classes in the fol-
lowing listing.

public class AssetInventory {
 private List<Ship> ships = new ArrayList<>();
 [...getters and setters here...]
}

Listing 2.26 Domain classes in Java

 Setup file extensions
that will be acceptedList that

e passed
to class

nder test

Result of method
call is another listUsing a

re to test
 element

of the list

Lists are already
initialized
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

http://www.groovy-lang.org/gdk.html
http://www.groovy-lang.org/gdk.html

57Advanced Groovy features useful to testing

Crea
the bui

ckageUsing

builde
the top-

ob

au
and
public class Ship {
 private String name;
 private List<CrewMember> crewMembers = new ArrayList<>();
 private String destination;
 private List<Cargo> cargos= new ArrayList<>();
[...getters and setters here...]
}

public class CrewMember {
 private String firstName;
 private String lastName;
 private int age;
[...getters and setters here...]
}
public class Cargo {
 private String type;
 private CargoOrder cargoOrder;
 private float tons;
[...getters and setters here...]
}
public class CargoOrder {
 private String buyer;
 private String city;
 private BigDecimal price;
[...getters and setters here...]
}

This is a typical business domain. If you look closely enough, you’ll see that it follows
certain rules:

■ Each child field has the same name of the class (CargoOrder cargoOrder).
■ Each list is already initialized.
■ Each list field has the plural name of its class (Ship > ships).

Because of these rules, it’s possible to create a deep hierarchy of this domain by using
an ObjectGraphBuilder, as shown in the next listing.

ObjectGraphBuilder builder = new ObjectGraphBuilder()
builder.classNameResolver = "com.manning.spock.chapter2.assets"

AssetInventory shipRegistry = builder.assetInventory() {
 ship (name: "Sea Spirit", destination:"Chiba") {
 crewMember(firstName:"Michael", lastName:"Curiel",age:43)
 crewMember(firstName:"Sean", lastName:"Parker",age:28)
 crewMember(firstName:"Lillian ", lastName:"Zimmerman",age:32)
 cargo(type:"Cotton", tons:5.4) {
 cargoOrder (buyer: "Rei
 Hosokawa",city:"Yokohama",price:34000)
 }
 cargo(type:"Olive Oil", tons:3.0) {
 cargoOrder (buyer: "Hirokumi
 Kasaya",city:"Kobe",price:27000)

Listing 2.27 Using a Groovy builder for quick object creation

Name of fields is the
same as class name.

ting
lder Instructing the

builder of that
domain Java pa the

r for
level
ject

Map-based
constructors

Children node
tomatically created
 attached to parent
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

58 CHAPTER 2 Groovy knowledge for Spock testing
 }
 }
 ship (name: "Calypso I", destination:"Bristol") {
 crewMember(firstName:"Eric", lastName:"Folkes",age:35)
 crewMember(firstName:"Louis", lastName:"Lessard",age:22)
 cargo(type:"Oranges", tons:2.4) {
 cargoOrder (buyer: "Gregory
 Schmidt",city:"Manchester",price:62000)
 }
 }
 ship (name: "Desert Glory", destination:"Los Angeles")
 {
 crewMember(firstName:"Michelle", lastName:"Kindred",age:38)
 crewMember(firstName:"Kathy", lastName:"Parker",age:21)
 cargo(type:"Timber", tons:4.8) {
 cargoOrder (buyer: "Carolyn
 Cox",city:"Sacramento",price:18000)
 }
 }
}

assert shipRegistry.ships.size == 3
assert shipRegistry.ships[0].name == "Sea Spirit"
assert shipRegistry.ships[1].crewMembers.size == 2
assert shipRegistry.ships[1].crewMembers[0].firstName == "Eric"
assert shipRegistry.ships[2].cargos[0].type=="Timber"
assert shipRegistry.ships[2].cargos[0].cargoOrder.city=="Sacramento"

This creates a ship registry with three ships, seven people, and four cargo orders, all in
about 30 lines of Groovy code. Creating the same tree with Java code would need
more than 120 lines of code (for brevity, you can find the code in the source of this
book). In this case, Groovy reduces code lines by 75%.

 The other important point is the visual overview of the tree structure. Because the
ObjectGraphBuilder offers a declarative DSL for the object creation, you can get an
overview of the tree structure by looking at the code.

 If your domain classes don’t follow the preceding rules, you can either change
them (easiest) or inject the ObjectBuilder with custom resolvers to override default
behavior. Consult the official Groovy documentation for examples with custom resolv-
ers. By default, the ObjectGraphBuilder will treat as plural (for collections) the class
name plus s (ship becomes ships). It also supports special cases with words that end in y
(daisy becomes daisies, army becomes armies, and so forth).

2.5.3 Creating test input with Expando

Spock includes comprehensive mocking and stubbing capabilities, as you’ll see in
chapter 6. For simple cases, you can also get away with using vanilla Groovy. Groovy
shines when it comes to dynamic object creation.

 As a final example of Groovy power, I’ll demonstrate how Groovy can create
objects on the spot. Assume that you have an interface of this DAO:

public interface AddressDao {
 Address load(Long id);
}

Licensed to Stephanie Bernal <nordicka.n@gmail.com>

59Advanced Groovy features useful to testing

Crea
empty

dynam

Tricking t
under tes

the Exp
the argu

irr
You also have a business service that uses this DAO as follows:

public class Stamper {
 private final AddressDao addressDao;

 public Stamper(AddressDao addressDao)
 {
 this.addressDao = addressDao;
 }

 public boolean isValid(Long addressID)
 {
 Address address = addressDao.load(addressID);
 return address.getStreet()!= null &&
 address.getPostCode()!= null;
 }
}

This business service checks Address objects (a POJO) and considers them valid if they
have both a street and a postal code. You want to write a Spock test for this service. Of
course, you could mock the AddressDao, as you’ll see in chapter 6. But with Groovy,
you can dynamically create an object that mimics this service, as shown in the follow-
ing listing.

def "Testing invalid address detection"() {
 when: "an address does not have a postcode"
 Address address = new Address(country:"Greece",number:23)

 def dummyAddressDao = new Expando()
 dummyAddressDao.load = { return address}

 Stamper stamper = new Stamper(dummyAddressDao as AddressDao)

 then: "this address is rejected"
 !stamper.isValid(1)
}

def "Testing invalid and valid address detection"() {
 when: "two different addresses are checked"
 Address invalidAddress = new Address(country:"Greece",number:23)
 Address validAddress = new Address(country:"Greece",
 number:23,street:"Argous", postCode:"4534")

 def dummyAddressDao = new Expando()
 dummyAddressDao.load = { id -> return
 id==2?validAddress:invalidAddress}

 Stamper stamper = new Stamper(dummyAddressDao as AddressDao)

 then: "Only the address with street and postcode is accepted"
 !stamper.isValid(1)
 stamper.isValid(2)
}

Listing 2.28 Using Expando to mock interfaces

Creating the
test data

ting the
 Groovy

ic object

Creating the load
method dynamically

Using the Groovy
dynamic object in place

of the Java interface
he class
t to use
ando—
ment is
elevant.

Covers
both cases

Using the closure argument
to return either test input

Call class
under test—
argument
is used in
Expando
closure.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

60 CHAPTER 2 Groovy knowledge for Spock testing

 Creating
that will
next num

Using
Expand
the pla
an iter
The magic line here is the one with the as keyword. This keyword performs casting in
Groovy but in a much more powerful way than Java. The Expando class has no com-
mon inheritance with the AddressDao, yet it can still work as one because of duck typ-
ing (both objects have a load() method, and that’s enough for Groovy).

 Although this is a common use of Expando classes, they have several other uses that
you might find interesting. The combination of duck typing and dynamic object cre-
ation will certainly amaze you.14 The next listing presents another example where I use
an Expando for integer generation (which could be used as test data in a Spock test).

Expando smartIterator = new Expando()
smartIterator.counter = 0;
smartIterator.limit = 4;
smartIterator.hasNext = { return counter < limit}
smartIterator.next = {return counter++}
smartIterator.restartFrom = {from->counter = from}

for(Integer number:smartIterator as Iterator<Integer>)
{
 println "Next number is $number"
}

println "Reset smart iterator"
smartIterator.restartFrom(2)#

for(Integer number:smartIterator as Iterator<Integer>)
{
 println "Next number is $number"
}

When you run this code, you’ll get the following:

>groovy ExpandoDemo.groovy
Next number is 0
Next number is 1
Next number is 2
Next number is 3
Reset smart iterator
Next number is 2
Next number is 3

After the iterator is restarted, you can use it again as usual, even though the previous
run reached the limit of numbers generated. Notice also that you don’t implement in
the Expando class the remove() method defined by the iterator Java interface. The
code doesn’t use it, so the Expando object doesn’t need to declare it. But because of

14 Just don’t get carried away. Expando overuse is not a healthy habit.

Listing 2.29 Using a Groovy Expando as test-data generator

Creating empty Groovy
dynamic object

field
hold
ber

Creating field that will
hold max value returned

Imitation of iterator
interface method

Adding custom
method not defined
in iterator interface

 the
o in

ce of
ator

Calling the custom method to
change the state of the iterator

Using the Expando
after resetting it
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

61Summary
duck typing, this Expando still passes as an iterator even though it implements only two
out of three required methods.

2.6 Summary
■ Groovy is a language that also runs in the JVM.
■ Groovy source is compiled into Java bytecode.
■ Using Java classes from Groovy code happens with the new keyword exactly like

Java.
■ Groovy is mostly compatible with Java syntax.
■ In Groovy, classes are public by default, and fields are private by default.
■ Groovy autogenerates getters and setters.
■ In Groovy, semicolons and the return keyword are optional.
■ Groovy supports optional typing: you can declare the type of a variable (as in

Java) or use the def keyword to leave it to the runtime.
■ Groovy treats all objects as true unless the object is an empty string, an empty

collection, 0, null, or false.
■ Spock uses Groovy assertions instead of JUnit assert calls.
■ Groovy allows you to create objects by using maps of fields/values inside the

constructor.
■ Groovy strings employ automatic templating, similar to JSTL.
■ Groovy comes with extensive utilities that read XML and JSON files.
■ Groovy supports closures that can be used to reduce the code lines in assert

statements.
■ An ObjectGraphBuilder can be used to quickly create a tree-like structure of

your business domain.
■ You can use Expando to dynamically create Groovy objects during runtime.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

A tour of Spock
functionality
With the Groovy basics out of the way, you’re now ready to focus on Spock syntax
and see how it combines several aspects of unit testing in a single and cohesive
package.

 Different applications come with different testing needs, and it’s hard to predict
what parts of Spock will be more useful to you beforehand. This chapter covers a bit
of all major Spock capabilities to give you a bird's-eye view of how Spock works. I
won’t focus on all the details yet because these are explained in the coming chapters.

 The purpose of this chapter is to act as a central hub for the whole book. You
can read this chapter and then, according to your needs, decide which of the com-
ing chapters is of special interest to you. If, for example, in your current application
you have tests with lots of test data that spans multiple input variables, you can skip
straight to the chapter that deals with data-driven tests (chapter 5).

This chapter covers
■ Understanding the given-when-then Spock

syntax
■ Testing datasets with data-driven tests
■ Introducing mocks/stubs with Spock
■ Examining mock behavior
62

Licensed to Stephanie Bernal <nordicka.n@gmail.com>

63Introducing the behavior-testing paradigm
 The following sections briefly touch on these three aspects of Spock:

■ Core testing of Java code (more details in chapter 4)
■ Parameterized tests (more details in chapter 5)
■ Isolation of the class under test (more details in chapter 6)

To illustrate these concepts, a series of increasingly complex, semi-real scenarios are
used, because some Spock features aren’t evident with trivial unit tests. For each sce-
nario, I’ll also compare the Spock unit test with a JUnit test (if applicable).

3.1 Introducing the behavior-testing paradigm
Let’s start with a full example of software testing. Imagine you work as a developer for
a software company that creates programs for fire-control systems, as shown in
figure 3.1.

 The processing unit is connected to multiple fire sensors and polls them continu-
ously for abnormal readings. When a fire is discovered, the alarm sounds. If the fire
starts spreading and another detector is triggered, the fire brigade is automatically
called. Here are the complete requirements of the system:

■ If all sensors report nothing strange, the system is OK and no action is needed.
■ If one sensor is triggered, the alarm sounds (but this might be a false positive

because of a careless smoker who couldn’t resist a cigarette).
■ If more than one sensor is triggered, the fire brigade is called (because the fire

has spread to more than one room).

Your colleague has already implemented this system, and you’re tasked with unit test-
ing. The skeleton of the Java implementation is shown in listing 3.1.

Alarm
Fire sensor

Fire brigade

Processing unit

Figure 3.1 A fire-monitoring system controlling multiple detectors
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

64 CHAPTER 3 A tour of Spock functionality

Meth
every
sensor

I
alarm
This fire sensor is regularly injected with the data from the fire sensors, and at any
given time, the sensor can be queried for the status of the alarm.

public class FireEarlyWarning {

 public void feedData(int triggeredFireSensors)
 {
 [...implementation here...]
 }

 public WarningStatus getCurrentStatus()
 {
 [...implementation here...]
 }
}

public class WarningStatus {
 public boolean isAlarmActive() {
 [...implementation here...]
 }

 public boolean isFireDepartmentNotified() {
 [...implementation here...]
 }

}

The application uses two classes:

■ The polling class has all the intelligence and contains a getter that returns a sta-
tus class with the present condition of the system.

■ The status class is a simple object that holds the details.1

How to use the code listings

You can find almost all code listings for this book at https://github.com/kkapelon/
java-testing-with-spock.

For brevity, the book sometimes points you to the source code (especially for long
listings). I tend to use the Eclipse IDE in my day-to-day work. If you didn’t already install
Spock and Eclipse in chapter 2, you can find installation instructions in appendix A.

Listing 3.1 A fire-control system in Java

1 This is only the heart of the system. Code for contacting the fire brigade or triggering the alarm is outside the
scope of this example.

The main class that
implements monitoring

od called
second by
 software Redacted for brevity—see

source code for full code

Status report
getter method

Contents of status
report (status class)

f true, the
 sounds.

If true, the fire
brigade is called.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

https://github.com/kkapelon/java-testing-with-spock
https://github.com/kkapelon/java-testing-with-spock

65Introducing the behavior-testing paradigm

Setup
for

Examin
of th
Your colleague has finished the implementation code, and has even written a JUnit
test2 as a starting point for the test suite you’re supposed to finish. You now have the
full requirements of the system and the implementation code, and you’re ready to
start unit testing.

3.1.1 The setup-stimulate-assert structure of JUnit

You decide to look first at the existing JUnit test your colleague already wrote. The
code is shown in the following listing.

@Test
public void fireAlarmScenario() {
 FireEarlyWarning fireEarlyWarning = new FireEarlyWarning();
 int triggeredSensors = 1;

 fireEarlyWarning.feedData(triggeredSensors);
 WarningStatus status = fireEarlyWarning.getCurrentStatus();

 assertTrue("Alarm sounds", status.isAlarmActive());
 assertFalse("No notifications", status.isFireDepartmentNotified());
}

This unit test covers the case of a single sensor detecting fire. According to the
requirements, the alarm should sound, but the fire department isn’t contacted yet. If
you closely examine the code, you’ll discover a hidden structure between the lines. All
good JUnit tests have three code segments:

1 In the setup phase, the class under test and all collaborators are created. All ini-
tialization stuff goes here.

2 In the stimulus phase, the class under test is tampered with, triggered, or other-
wise passed a message/action. This phase should be as brief as possible.

3 The assert phase contains only read-only code (code with no side effects), in
which the expected behavior of the system is compared with the actual one.

Notice that this structure is implied with JUnit. It’s never enforced by the framework and
might not be clearly visible in complex unit tests. Your colleague is a seasoned devel-
oper and has clearly marked the three phases by using the empty lines in listing 3.2:

■ The setup phase creates the FireEarlyWarning class and sets the number of
triggered sensors that will be evaluated (the first two statements in listing 3.2).

■ The stimulus phase passes the triggered sensors to the fire monitor and also
asks it for the current status (the middle two statements in listing 3.2).

■ The assert phase verifies the results of the test (the last two statements).

2 Following the test-driven development (TDD) principles of writing a unit test for a feature before the feature
implementation.

Listing 3.2 A JUnit test for the fire-control system

 JUnit test case

 needed
 the test

Create an event.

e results
e event.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

66 CHAPTER 3 A tour of Spock functionality
This is good advice to follow, but not all developers follow this technique. (It’s also
possible to demarcate the phases with comments.)

 Because JUnit doesn’t clearly distinguish between the setup-stimulate-assert phases,
it’s up to the developer to decide on the structure of the unit test. Understanding the
structure of a JUnit test isn’t always easy when more-complex testing is performed. For
comparison, the following listing shows a real-world result.3

private static final String MASTER_NAME = "mymaster";
private static HostAndPort sentinel = new HostAndPort("localhost",26379);

@Test
public void sentinelSet() {
 Jedis j = new Jedis(sentinel.getHost(), sentinel.getPort());

 try {
 Map<String, String> parameterMap = new HashMap<String,
 String>();
 parameterMap.put("down-after-milliseconds",
 String.valueOf(1234));
 parameterMap.put("parallel-syncs", String.valueOf(3));
 parameterMap.put("quorum", String.valueOf(2));
 j.sentinelSet(MASTER_NAME, parameterMap);

 List<Map<String, String>> masters = j.sentinelMasters();
 for (Map<String, String> master : masters) {
 if (master.get("name").equals(MASTER_NAME)) {
 assertEquals(1234, Integer.parseInt(master
 .get("down-after-milliseconds")));
 assertEquals(3,
 Integer.parseInt(master.get("parallel-
 syncs")));
 assertEquals(2,
 Integer.parseInt(master.get("quorum")));
 }
 }

 parameterMap.put("quorum", String.valueOf(1));
 j.sentinelSet(MASTER_NAME, parameterMap);
 } finally {
 j.close();
 }
}

After looking at the code, how long did it take you to understand its structure? Can
you easily understand which class is under test? Are the boundaries of the three

Listing 3.3 JUnit test with complex structure (real example)

3 This unit test is from the jedis library found on GitHub. I mean no disrespect to the authors of this code, and
I congratulate them for offering their code to the public. The rest of the tests from jedis are well-written.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

67Introducing the behavior-testing paradigm

 St

Another st
phase—

bad pr
phases really clear? Imagine that this unit test has failed, and you have to fix it imme-
diately. Can you guess what has gone wrong simply by looking at the code?

 Another problem with the lack of clear structure of a JUnit test is that a developer
can easily mix the phases in the wrong4 order, or even write multiple tests into one.
Returning to the fire-control system in listing 3.2, the next listing shows a bad unit test
that tests two things at once. The code is shown as an antipattern. Please don’t do this
in your unit tests!

@Test
public void sensorsAreTriggered() {
 FireEarlyWarning fireEarlyWarning = new FireEarlyWarning();
 fireEarlyWarning.feedData(1);
 WarningStatus status = fireEarlyWarning.getCurrentStatus();

 assertTrue("Alarm sounds", status.isAlarmActive());
 assertFalse("No notifications", status.isFireDepartmentNotified());
 fireEarlyWarning.feedData(2);

 WarningStatus status2 = fireEarlyWarning.getCurrentStatus();
 assertTrue("Alarm sounds", status2.isAlarmActive());
 assertTrue("Fire Department is notified",
 status2.isFireDepartmentNotified());
}

This unit test asserts two different cases. If it breaks and the build server reports the
result, you don’t know which of the two scenarios has the problem.

 Another common antipattern I see all too often is JUnit tests with no assert state-
ments at all! JUnit is powerful, but as you can see, it has its shortcomings. How would
Spock handle this fire-control system?

3.1.2 The given-when-then flow of Spock

Unlike JUnit, Spock has a clear test structure that’s denoted with labels (blocks in
Spock terminology), as you’ll see in chapter 4, which covers the lifecycle of a Spock
test. Looking back at the requirements of the fire-control system, you’ll see that they
can have a one-to-one mapping with Spock tests. Here are the requirements again:

■ If all sensors report nothing strange, the system is OK and no action is needed.
■ If one sensor is triggered, the alarm sounds (but this might be a false positive

because of a careless smoker who couldn’t resist a cigarette).
■ If more than one sensor is triggered, the fire brigade is called (because the fire

has spread to more than one room).

4 Because “everything that can go wrong, will go wrong,” you can imagine that I’ve seen too many antipatterns
of JUnit tests that happen because of the lack of a clear structure.

Listing 3.4 A JUnit test that tests two things—don’t do this

Setup phase

imulus
 phase

First assert phase

imulus
this is
actice.

Second assert
phase
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

68 CHAPTER 3 A tour of Spock functionality
Spock can directly encode these sentences by using full English text inside the source
test of the code, as shown in the following listing.

class FireSensorSpec extends spock.lang.Specification{

def "If all sensors are inactive everything is ok"() {
 given: "that all fire sensors are off"
 FireEarlyWarning fireEarlyWarning = new FireEarlyWarning()
 int triggeredSensors = 0

 when: "we ask the status of fire control"
 fireEarlyWarning.feedData(triggeredSensors)
 WarningStatus status = fireEarlyWarning.getCurrentStatus()

 then: "no alarm/notification should be triggered"
 !status.alarmActive
 !status.fireDepartmentNotified
}

def "If one sensor is active the alarm should sound as a precaution"() {
 given: "that only one fire sensor is active"
 FireEarlyWarning fireEarlyWarning = new FireEarlyWarning()
 int triggeredSensors = 1

 when: "we ask the status of fire control"
 fireEarlyWarning.feedData(triggeredSensors)
 WarningStatus status = fireEarlyWarning.getCurrentStatus()

 then: "only the alarm should be triggered"
 status.alarmActive
 !status.fireDepartmentNotified
}

def "If more than one sensor is active then we have a fire"() {
 given: "that two fire sensors are active"
 FireEarlyWarning fireEarlyWarning = new FireEarlyWarning()
 int triggeredSensors = 2

 when: "we ask the status of fire control"
 fireEarlyWarning.feedData(triggeredSensors)
 WarningStatus status = fireEarlyWarning.getCurrentStatus()

 then: "alarm is triggered and the fire department is notified"
 status.alarmActive
 status.fireDepartmentNotified
}
}

Spock follows a given-when-then structure that’s enforced via labels inside the code.
Each unit test can be described using plain English sentences, and even the labels can
be described with text descriptions.

Listing 3.5 The full Spock test for the fire-control system

Clear explanation of
what this test does

Setup
phase

Stimulus phase

Assert phase
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

69Introducing the behavior-testing paradigm
This enforced structure pushes the developer to think before writing the test, and also
acts as a guide on where each statement goes. The beauty of the English descriptions
(unlike JUnit comments) is that they’re used directly by reporting tools. A screenshot
of a Maven Surefire report is shown in figure 3.2 with absolutely no modifications
(Spock uses the JUnit runner under the hood). This report can be created by running
mvn surefire-report:report on the command line.

 The first column shows the result of the test (a green tick means that the test
passes), the second column contains the description of the test picked up from the
source code, and the third column presents the execution time of each test (really
small values are ignored). More-specialized tools can drill down in the labels of the
blocks as well, as shown in figure 3.3. The example shown is from Spock reports
(https://github.com/renatoathaydes/spock-reports).

Figure 3.2 Surefire report with Spock test description

Figure 3.3 Spock report
with all English sentences
of the test
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

https://github.com/renatoathaydes/spock-reports

70 CHAPTER 3 A tour of Spock functionality
Spock isn’t a full BDD tool,5 but it certainly pushes you in that direction. With careful
planning, your Spock tests can act as living business documentation.

 You’ve now seen how Spock handles basic testing. Let’s see a more complex testing
scenario, where the number of input and output variables is much larger.

3.2 Handling tests with multiple input sets
With the fire-control system in place, you’re tasked with a more complex testing
assignment. This time, the application under test is a monitor system for a nuclear
reactor. It functions in a similar way to the fire monitor, but with more input sensors.
The system6 is shown in figure 3.4.

 The components of the system are as follows:

■ Multiple fire sensors (input)
■ Three radiation sensors in critical points (input)
■ Current pressure (input)
■ An alarm (output)

5 See JBehave (http://jbehave.org/) or Cucumber JVM (http://cukes.info/) to see how business analysts, tes-
ters, and developers can define the test scenarios of an enterprise application.

6 This system is imaginary. I’m in no way an expert on nuclear reactors. The benefits of the example will
become evident in the mocking/stubbing section of the chapter.

Shutdown command

Fire sensors

Radiation sensors

Alarm

Pressure

Evacuation timer

Processing unit

Figure 3.4 A monitor system for a nuclear reactor
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

http://jbehave.org/
http://cukes.info/

71Handling tests with multiple input sets
■ An evacuation command (output)
■ A notification to a human operator that the reactor should shut down (output)

The system is already implemented according to all safety requirements needed for
nuclear reactors. It reads sensor data at regular intervals and depending on the read-
ings, it can alert or suggest corrective actions. Here are some of the requirements:

■ If pressure goes above 150 bars, the alarm sounds.
■ If two or more fire alarms are triggered, the alarm sounds and the operator is

notified that a shutdown is needed (as a precautionary measure).
■ If a radiation leak is detected (100+ rads from any sensor), the alarm sounds, an

announcement is made that the reactor should be evacuated within the next min-
ute, and a notification is sent to the human operator that a shutdown is needed.

You speak with the technical experts of the nuclear reactor, and you jointly decide that
a minimum of 12 test scenarios will be examined, as shown in table 3.1.

The scenarios outlined in this table are a classic example of parameterized tests. The test
logic is always the same (take these three inputs and expect these three outputs), and
the test code needs to handle different sets of variables for only this single test logic.

 In this example, we have 12 scenarios with 6 variables, but you can easily imagine
cases with much larger test data. The naive way to handle testing for the nuclear reactor

Table 3.1 Scenarios that need testing for the nuclear reactor

Sample inputs Expected outputs

Current
pressure

Fire
sensors

Radiation
sensors

Audible
alarm

A shutdown is
needed

Evacuation within
x minutes

150 0 0, 0, 0 No No No

150 1 0, 0, 0 Yes No No

150 3 0, 0, 0 Yes Yes No

150 0 110.4 ,0.3, 0.0 Yes Yes 1 minute

150 0 45.3 ,10.3, 47.7 No No No

155 0 0, 0, 0 Yes No No

170 0 0, 0, 0 Yes Yes 3 minutes

180 0 110.4 ,0.3, 0.0 Yes Yes 1 minute

500 0 110.4 ,300, 0.0 Yes Yes 1 minute

 30 0 110.4 ,1000, 0.0 Yes Yes 1 minute

155 4 0, 0, 0 Yes Yes No

170 1 45.3 ,10.f, 47.7 Yes Yes 3 minutes
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

72 CHAPTER 3 A tour of Spock functionality

cla
would be to write 12 individual tests. That would be problematic, not only because of
code duplication, but also because of future maintenance. If a new variable is added in
the system (for example, a new sensor), you’d have to change all 12 tests at once.

 A better approach is needed, preferably one that decouples the test code (which
should be written once) from the sets of test data and expected output (which should
be written for all scenarios). This kind of testing needs a framework with explicit sup-
port for parameterized tests.

 Spock comes with built-in support for parameterized tests with a friendly DSL7 syn-
tax specifically tailored to handle multiple inputs and outputs. But before I show you
this expressive DSL, allow me to digress a bit into the current state of parameterized
testing as supported in JUnit (and the alternative approaches).

 Many developers consider parameterized testing a challenging and complicated
process. The truth is that the limitations of JUnit make parameterized testing a chal-
lenge, and developers suffer because of inertia and their resistance to changing their
testing framework.

3.2.1 Existing approaches to multiple test-input parameters

The requirements for the nuclear-reactor monitor are clear, the software is already
implemented, and you’re ready to test it. What’s the solution if you follow the status quo?

 The recent versions of JUnit advertise support for parameterized tests. The official
way of implementing a parameterized test with JUnit is shown in the following listing.
The listing assumes that –1 in evacuation minutes means that no evacuation is needed.

@RunWith(Parameterized.class)
public class NuclearReactorTest {
private final int triggeredFireSensors;
private final List<Float> radiationDataReadings;
private final int pressure;

private final boolean expectedAlarmStatus;
private final boolean expectedShutdownCommand;
private final int expectedMinutesToEvacuate;

public NuclearReactorTest(int pressure, int triggeredFireSensors,
 List<Float> radiationDataReadings, boolean expectedAlarmStatus,
 boolean expectedShutdownCommand, int expectedMinutesToEvacuate) {

 this.triggeredFireSensors = triggeredFireSensors;
 this.radiationDataReadings = radiationDataReadings;
 this.pressure = pressure;
 this.expectedAlarmStatus = expectedAlarmStatus;
 this.expectedShutdownCommand = expectedShutdownCommand;
 this.expectedMinutesToEvacuate = expectedMinutesToEvacuate;

7 A DSL is a programming language targeted at a specific problem as opposed to a general programming lan-
guage like Java. See http://en.wikipedia.org/wiki/Domain-specific_language.

Listing 3.6 Testing the nuclear reactor scenarios with JUnit

Specialized runner needed
for parameterized tests is
created with @RunWith.Inputs

become
ss fields.

Outputs become
class fields.

Special constructor
with all inputs
and outputs
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

http://en.wikipedia.org/wiki/Domain-specific_language

73Handling tests with multiple input sets

Two-dime
arra

te
 }

@Test
public void nuclearReactorScenario() {
 NuclearReactorMonitor nuclearReactorMonitor = new
 NuclearReactorMonitor();

 nuclearReactorMonitor.feedFireSensorData(triggeredFireSensors);
 nuclearReactorMonitor.feedRadiationSensorData(radiationDataReadings);
 nuclearReactorMonitor.feedPressureInBar(pressure);
 NuclearReactorStatus status = nuclearReactorMonitor.getCurrentStatus();

 assertEquals("Expected no alarm", expectedAlarmStatus,
 status.isAlarmActive());
 assertEquals("No notifications", expectedShutdownCommand,
 status.isShutDownNeeded());
 assertEquals("No notifications", expectedMinutesToEvacuate,
 status.getEvacuationMinutes());
 }

 @Parameters
 public static Collection<Object[]> data() {
 return Arrays.asList(new Object[][] {
 { 150, 0, new ArrayList<Float>(), false, false, -1 },
 { 150, 1, new ArrayList<Float>(), true, false, -1 },
 { 150, 3, new ArrayList<Float>(), true, true, -1 },
 { 150, 0, Arrays.asList(110.4f, 0.3f, 0.0f), true,
 true, 1 },
 { 150, 0, Arrays.asList(45.3f, 10.3f, 47.7f), false,
 false, -1 },
 { 155, 0, Arrays.asList(0.0f, 0.0f, 0.0f), true, false,
 -1 },
 { 170, 0, Arrays.asList(0.0f, 0.0f, 0.0f), true, true,
 3 },
 { 180, 0, Arrays.asList(110.4f, 0.3f, 0.0f), true,
 true, 1 },
 { 500, 0, Arrays.asList(110.4f, 300f, 0.0f), true,
 true, 1 },
 { 30, 0, Arrays.asList(110.4f, 1000f, 0.0f), true,
 true, 1 },
 { 155, 4, Arrays.asList(0.0f, 0.0f, 0.0f), true, true,
 -1 },
 { 170, 1, Arrays.asList(45.3f, 10.3f, 47.7f), true,
 true, 3 }, });

 }

}

If you look at this code and feel it’s too verbose, you’re right! This listing is a true tes-
tament to the limitations of JUnit. To accomplish parameterized testing, the following
constraints specific to JUnit need to be satisfied:

■ The test class must be polluted with fields that represent inputs.
■ The test class must be polluted with fields that represent outputs.

Unit test that will
use parameters

Source of
test data

nsional
y with

st data
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

74 CHAPTER 3 A tour of Spock functionality
■ A special constructor is needed for all inputs and outputs.
■ Test data comes into a two-dimensional object array (which is converted to a list).

Notice also that because of these limitations, it’s impossible to add a second parame-
terized test in the same class. JUnit is so strict that it forces you to have a single class for
each test when multiple parameters are involved. If you have a Java class that needs
more than one parameterized test and you use JUnit, you’re out of luck.8

 The problems with JUnit parameterized tests are so well known that several inde-
pendent efforts have emerged to improve this aspect of unit testing. At the time of
writing, at least three external projects9 offer their own syntax on top of JUnit for a
friendlier and less cluttered code.

 Parameterized tests are also an area where TestNG (http://testng.org) has been
advertised as a better replacement for JUnit. TestNG does away with all JUnit limita-
tions and comes with extra annotations (@DataProvider) that truly decouple test data
and test logic.

 Despite these external efforts, Spock comes with an even better syntax for parame-
ters (Groovy magic again!). In addition, having all these improved efforts external to
JUnit further supports my argument that Spock is a “batteries-included” framework
providing everything you need for testing in a single package.

3.2.2 Tabular data input with Spock

You’ve seen the hideous code of JUnit when multiple parameters are involved. You
might have also seen some improvements with TestNG or extra JUnit add-ons. All
these solutions attempt to capture the values of the parameters by using Java code or
annotations.

 Spock takes a step back and focuses directly on the original test scenarios. Return-
ing to the nuclear-monitoring system, remember that what you want to test are the
scenarios listed in table 3.1 (written in a human-readable format).

 Spock allows you to do the unthinkable. You can directly embed this table as-is
inside your Groovy code, as shown in the next listing. Again I assume that –1 in evacu-
ation minutes means that no evacuation is needed.

class NuclearReactorSpec extends spock.lang.Specification{

def "Complete test of all nuclear scenarios"() {
 given: "a nuclear reactor and sensor data"
 NuclearReactorMonitor nuclearReactorMonitor =new
 NuclearReactorMonitor()

8 There are ways to overcome this limitation, but I consider them hacks that make the situation even more com-
plicated.

9 https://code.google.com/p/fuzztester/wiki/FuzzTester; https://github.com/Pragmatists/junitparams;
https://github.com/piotrturski/zohhak.

Listing 3.7 Testing the nuclear reactor scenarios with Spock

Human-readable
test description
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

https://code.google.com/p/fuzztester/wiki/FuzzTester
https://github.com/Pragmatists/junitparams
https://github.com/piotrturski/zohhak
http://testng.org

75Handling tests with multiple input sets

te

Usag

Defin
inpu

o

s
 when: "we examine the sensor data"
 nuclearReactorMonitor.feedFireSensorData(fireSensors)
 nuclearReactorMonitor.feedRadiationSensorData(radiation)
 nuclearReactorMonitor.feedPressureInBar(pressure)
 NuclearReactorStatus status = nuclearReactorMonitor.getCurrentStatus()

 then: "we act according to safety requirements"
 status.alarmActive == alarm
 status.shutDownNeeded == shutDown
 status.evacuationMinutes == evacuation

 where: "possible nuclear incidents are:"
 pressure | fireSensors | radiation || alarm | shutDown | evacuation
 150 | 0 | [] || false | false | -1
 150 | 1 | [] || true | false | -1
 150 | 3 | [] || true | true | -1
 150 | 0| [110.4f ,0.3f, 0.0f] || true | true | 1
 150 | 0| [45.3f ,10.3f, 47.7f]|| false | false | -1
 155 | 0| [0.0f ,0.0f, 0.0f] || true | false | -1
 170 | 0| [0.0f ,0.0f, 0.0f] || true | true | 3
 180 | 0| [110.4f ,0.3f, 0.0f] || true | true | 1
 500 | 0| [110.4f ,300f, 0.0f] || true | true | 1
 30 | 0|[110.4f ,1000f, 0.0f] || true | true | 1
 155 | 4| [0.0f ,0.0f, 0.0f] || true | true | -1
 170 | 1| [45.3f ,10.3f, 47.7f]|| true | true | 3
 }

}

Spock takes a different approach to parameters. Powered by Groovy capabilities, it
offers a descriptive DSL for tabular data. The key point of this unit test is the where:
label (in addition to the usual given-then-when labels) that holds a definition of all
inputs/outputs used in the other blocks.

 In the where: block of this Spock test, I copied verbatim the scenarios of the
nuclear-reactor monitor from the table. The || notation is used to split the inputs
from outputs. Reading this table is possible even by nontechnical people. Your busi-
ness analyst can look at this table and quickly locate missing scenarios.

 Adding a new scenario is easy:

■ You can append a new line at the end of the table with a new scenario, and the
test will pick the new scenario upon the next run.

■ The parameters are strictly contained inside the test method, unlike JUnit. The
test class has no need for special constructors or fields. A single Spock class can
hold an unlimited number of parameterized tests, each with its own tabular data.

The icing on the cake is the amount of code. The JUnit test has 82 lines of Java code,
whereas the Spock test has 38 lines. In this example, I gained 50% code reduction by
using Spock, and kept the same functionality as before (keeping my promise from
chapter 1 that Spock tests will reduce the amount of test code in your application).

Usage of
st inputs

e of test
outputs Source of

parameters

ition of
ts and
utputs

Tabular
representation
of all scenario
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

76 CHAPTER 3 A tour of Spock functionality
 Chapter 5 shows several other tricks for Spock parameterized tests, so feel free to
jump there directly if your enterprise application is plagued by similar JUnit boiler-
plate code.

 We’ll close our Spock tour with its mocking/stubbing capabilities.

3.3 Isolating the class under test
JUnit doesn’t support mocking (faking external object communication) out of the box.
Therefore, I usually employ Mockito10 when I need to fake objects in my JUnit tests.

 If you’ve never used mocking in your unit tests, fear not, because this book covers
both theory and practice (with Spock). I strongly believe that mocking is one of the
pillars of well-written unit tests and I’m always puzzled when I see developers who
neglect or loathe mocks and stubs.

 The literature on mocking hasn’t reached a single agreement on naming the core
concepts. Multiple terms exist, such as these:

■ Mocks/stubs
■ Test doubles
■ Fake collaborators

All these usually mean the same thing: dummy objects that are injected in the class
under test, replacing the real implementations.

■ A stub is a fake class that comes with preprogrammed return values. It’s injected
in the class under test so that you have absolute control of what’s being tested
as input.

■ A mock is a fake11 class that can be examined after the test is finished for its inter-
actions with the class under test (for example, you can ask it whether a method
was called or how many times it was called).

Things sometimes get more complicated because a mock can also function as a stub if
that’s needed.12 The rest of this book uses the mock/stub naming convention because
Spock closely follows this pattern. The next examples show both.

3.3.1 The case of mocking/stubbing

After finishing with the nuclear-reactor monitor module, you’re tasked with testing
the temperature sensors of the same reactor. Figure 3.5 gives an overview of the
system.

10 Many mock frameworks are available for Java, but Mockito is the easiest and most logical in my opinion. Some
of its ideas have also found their way into Spock itself. See https://github.com/mockito/mockito.

11 Don’t sweat the naming rules. In my day job, I name all these classes as mocks and get on with my life.
12 The two hardest problems in computer science are naming things and cache invalidation.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

https://github.com/mockito/mockito

77Isolating the class under test

Method
 by th
 und

Pr
 tempe

 re
Even though at first glance this temperature
monitor is similar to the previous system, it
has two big differences:

■ The system under test—the tempera-
ture monitor—doesn’t directly com-
municate with the temperature
sensors. It obtains the readings from
another Java system, the temperature
reader (implemented by a different
software company than yours).

■ The requirements for the tempera-
ture monitor indicate that the alarm
should sound if the difference in tem-
perature readings (either up or
down) is greater than 20 degrees.

Figure 3.5 A monitor that gets
temperatures via another system

You need to write unit tests for the temperature monitor. The implementation code to
be tested is shown in the next listing.

public class TemperatureReadings {

 private long sensor1Data;
 private long sensor2Data;
 private long sensor3Data;

 [...getters and setters here]
}

public interface TemperatureReader {
 TemperatureReadings getCurrentReadings();
}

public class TemperatureMonitor {

 private final TemperatureReader reader;
 private TemperatureReadings lastReadings;
 private TemperatureReadings currentReadings;

Listing 3.8 Java classes for the temperature monitor and reader

Alarm

Temperature
reader

Temperature
sensors

Temperature
monitor

Simple class that
contains temperatures

Current
temperature

Interface implemented
by the reader software

 called
e class
er test The class

under test
Injected field
of reader

evious
rature
adings

Latest temperature
readings
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

78 CHAPTER 3 A tour of Spock functionality

Co

Co
t

 public TemperatureMonitor(final TemperatureReader reader)
 {
 this.reader = reader;
 }

 public boolean isTemperatureNormal()
 {
 [...implementation here that compares readings...]
 }

 public void readSensor()
 {
 lastReadings = currentReadings;
 currentReadings = reader.getCurrentReadings();
 }

}

The specifications are based on temperature readings. Unlike the previous example
that used fixed values (for example, if pressure is more than 150, do this), here you
have to test consecutive readings (that is, take an action only if temperature is higher
compared to the previous reading).

 Reading the specifications, it’s obvious you need a way to “trick” the class under
test to read temperature readings of your choosing. Unfortunately, the temperature
monitor has no way of directly obtaining input. Instead, it calls another Java API from
the reader software.13 How can you “trick” the TemperatureMonitor class to read dif-
ferent types of temperatures?

SOLUTIONS FOR FAKING INPUT FROM COLLABORATING CLASSES

A good start would be to contact the software company that writes the temperature-
reader software and ask for a debug version of the module, which can be controlled to
give any temperature you choose, instead of reading the real hardware sensors. This
scenario might sound ideal, but in practice it’s difficult to achieve, either for political
reasons (the company won’t provide what you ask) or technical reasons (the debug
version has bugs of its own).

 Another approach would be to write your own dummy implementation of
TemperatureReader that does what you want. I’ve seen this technique too many times
in enterprise projects, and I consider it an antipattern. This introduces a new class
that’s used exclusively for unit tests and must be kept in sync with the specifications.
As soon as the specifications change (which happens a lot in enterprise projects), you
must hunt down all those dummy classes and upgrade them accordingly to keep the
stability of unit tests.

 The recommended approach is to use the built-in mocking capabilities of Spock.
Spock allows you to create a replacement class (or interface implementation) on the

13 Notice that in this case I used constructor injection, but setter injection could also work.

nstructor
 injection Method that

needs unit tests

Called automatically
at regular intervals

mmunication with
emperature reader
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

79Isolating the class under test

D
i

e

C

d

Cl
spot and direct it to do your bidding while the class under test still thinks it’s talking to
a real object.

3.3.2 Stubbing fake objects with Spock

To create a unit test for the temperature-monitoring system, you can do the following:

1 Create an implementation of the TemperatureReader interface.
2 Instruct this smart implementation to return fictional readings for the first call.
3 Instruct this smart implementation to return other fictional readings for the

second call.
4 Connect the class under test with this smart implementation.
5 Run the test, and see what the class under test does.

In Spock parlance, this “smart implementation” is called a stub, which means a fake
class with canned responses. The following listing shows stubbing in action, as previ-
ously outlined.

class CoolantSensorSpec extends spock.lang.Specification{

 def "If current temperature difference is within limits everything is
 ok"() {
 given: "that temperature readings are within limits"
 TemperatureReadings prev = new
 TemperatureReadings(sensor1Data:20,
 sensor2Data:40,sensor3Data:80)
 TemperatureReadings current = new
 TemperatureReadings(sensor1Data:30,
 sensor2Data:45,sensor3Data:73);
 TemperatureReader reader = Stub(TemperatureReader)

 reader.getCurrentReadings() >>> [prev, current]

 TemperatureMonitor monitor = new TemperatureMonitor(reader)

 when: "we ask the status of temperature control"
 monitor.readSensor()
 monitor.readSensor()

 then: "everything should be ok"
 monitor.isTemperatureNormal()
 }

 def "If current temperature difference is more than 20 degrees the
 alarm should sound"() {
 given: "that temperature readings are not within limits"
 TemperatureReadings prev = new
 TemperatureReadings(sensor1Data:20,
 sensor2Data:40,sensor3Data:80)
 TemperatureReadings current = new

Listing 3.9 Stubbing with Spock

Premade
temperature
readings

ummy interface
mplementation Instructing the

dummy interface
to return premad
readingslass under test

is injected with
ummy interface

ass under test calls
dummy interface

Assertion after two
subsequent calls
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

80 CHAPTER 3 A tour of Spock functionality
 TemperatureReadings(sensor1Data:30,
 sensor2Data:10,sensor3Data:73);
 TemperatureReader reader = Stub(TemperatureReader)
 reader.getCurrentReadings() >>> [prev,current]
 TemperatureMonitor monitor = new TemperatureMonitor(reader)

 when: "we ask the status of temperature control"
 monitor.readSensor()
 monitor.readSensor()

 then: "the alarm should sound"
 !monitor.isTemperatureNormal()
 }
}

The magic line is the Stub() call, shown here:

TemperatureReader reader = Stub(TemperatureReader)

Spock, behind the scenes, creates a dummy implementation of this interface. By
default the implementation does nothing, so it must be instructed how to react, which
is done with the second important line, the >>> operator:

reader.getCurrentReadings() >>> [prev, current]

This line indicates the following:

■ The first time the getCurrentReadings() method is called on the dummy
interface, return the instance named prev.

■ The second time, return the object named current.

The >>> operator is normally called an unsigned shift operator 14 in Java, but Spock over-
loads it (Groovy supports operator overloading) to provide canned answers to a stub.
Now the dummy interface is complete. The class under test is injected with the Spock
stub, and calls it without understanding that all its responses are preprogrammed. As
far as the class under test is concerned, the Spock stub is a real implementation.

 The final result: you’ve implemented the unit test for the temperature reader com-
plying with the given requirements, even though the class under test never communi-
cates with the temperature sensors themselves.

3.3.3 Mocking collaborators

For simplicity, all the systems in these examples so far only recommend the suggested
action (for example, the alarm should sound). They assume that another external sys-
tem polls the various monitors presented and then takes the action.

 In the real world, systems are rarely this simple. Faking the input data is only half
the effort needed to write effective unit tests. The other half is faking the output

14 http://docs.oracle.com/javase/tutorial/java/nutsandbolts/op3.html.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

http://docs.oracle.com/javase/tutorial/java/nutsandbolts/op3.html

81Isolating the class under test
parameters. In this case, you need to use mocking in the mix as well. To see how this
works, look at the extended temperature-monitor system shown in figure 3.6.

 Assume that for this scenario, business analysis has decided that the temperature
control of the reactor is mission critical and must be completely automatic. Instead of
sounding an alarm and contacting a human operator, the system under test is fully
autonomous, and will shut down the reactor on its own if the temperature difference
is higher than 50 degrees. The alarm still sounds if the temperature difference is
higher than 20 degrees, but the reactor doesn’t shut down in this case, allowing for
corrective actions by other systems.

 Shutting down the reactor and sounding the alarm happens via an external Java
library (over which you have no control) that’s offered as a simple API. The system
under test is now injected with this external API as well, as shown in the following listing.

public class TemperatureReadings {

 private long sensor1Data;
 private long sensor2Data;
 private long sensor3Data;

 [...getters and setters here]
}

Listing 3.10 Java classes for the temperature monitor, reader, and reactor control

Alarm

Temperature
reader

Temperature
sensors

Temperature
monitor

Reactor
control

Automatic
shutdown

Figure 3.6 A full system with input and output and side effects

Simple class that
contains temperatures

Current
temperature
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

82 CHAPTER 3 A tour of Spock functionality

Method
by th
und
public interface TemperatureReader {
 TemperatureReadings getCurrentReadings();
}

public class ReactorControl {
 public void activateAlarm()
 {
 [...implementation here...]
 }

 public void shutdownReactor()
 {
 [...implementation here...]
 }
}

public class ImprovedTemperatureMonitor {

 private final TemperatureReader reader;
 private TemperatureReadings lastReadings;
 private TemperatureReadings currentReadings;
 private final ReactorControl reactorControl;

 public ImprovedTemperatureMonitor(final TemperatureReader reader, final
 ReactorControl reactorControl)
 {
 this.reactorControl = reactorControl;
 this.reader = reader;
 }

 private boolean isTemperatureDiffMoreThan(long degrees)
 {
 [...implementation here that compares readings...]
 }

 public void readSensor()
 {
 lastReadings = currentReadings;
 currentReadings = reader.getCurrentReadings();

 [...sanity checks...]

 if(isTemperatureDiffMoreThan(20))
 {
 reactorControl.activateAlarm();
 }
 if(isTemperatureDiffMoreThan(50))
 {
 reactorControl.shutdownReactor();
 }
 }

}

Interface implemented by
the reader software called

e class
er test

Class with
side effects

Class under test

Injected field of reader
and reactor control

Class under test calls
method with side effects
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

83Isolating the class under test
Again, you’re tasked with the unit tests for this system. By using Spock stubs as demon-
strated in the previous section, you already know how to handle the temperature
reader. This time, however, you can’t easily verify the reaction of the class under test,
ImprovedTemperatureMonitor, because there’s nothing you can assert.

 The class doesn’t have any method that returns its status. Instead it internally calls
the Java API for the external library that handles the reactor. How can you test this?

OPTIONS FOR UNIT TESTING THIS MORE-COMPLEX SYSTEM

As before, you have three options:

1 You can ask the company that produces the Java API of the reactor control to
provide a “debug” version that doesn’t shut down the reactor, but instead prints
a warning or a log statement.

2 You can create your own implementation of ReactorControl and use that to
create your unit test. This is the same antipattern as stubs, because it adds extra
complexity and an unneeded maintenance burden to sync this fake object
whenever the Java API of the external library changes. Also notice that
ReactorControl is a concrete class and not an interface, so additional refactor-
ing effort is required before you even consider this route.

3 You can use mocks. This is the recommended approach.

Let’s see how Spock handles this testing scenario.

3.3.4 Examining interactions of mocked objects

As it does for stubbing, Spock also offers built-in mocking support. A mock is another
fake collaborator of the class under test. Spock allows you to examine mock objects for
their interactions after the test is finished. You pass it as a dependency, and the class
under test calls its methods without understanding that you intercept all those calls
behind the scenes. As far as the class under test is concerned, it still communicates
with a real class.

 Unlike stubs, mocks can fake input/output, and can be examined after the test is
complete. When the class under test calls your mock, the test framework (Spock in
this case) notes the characteristics of this call (such as number of times it was called or
even the arguments that were passed for this call). You can examine these characteris-
tics and decide if they are what you expect.

 In the temperature-monitor scenario, you saw how the temperature reader is
stubbed. The reactor control is also mocked, as shown in the next listing.

def "If current temperature difference is more than 20 degrees the alarm
 sounds"() {
 given: "that temperature readings are not within limits"
 TemperatureReadings prev = new TemperatureReadings(sensor1Data:20,
 sensor2Data:40,sensor3Data:80)
 TemperatureReadings current = new TemperatureReadings(sensor1Data:30,
 sensor2Data:10,sensor3Data:73);

Listing 3.11 Mocking and stubbing with Spock
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

84 CHAPTER 3 A tour of Spock functionality

C
test
 TemperatureReader reader = Stub(TemperatureReader)

 reader.getCurrentReadings() >>> [prev, current]

 ReactorControl control = Mock(ReactorControl)
 ImprovedTemperatureMonitor monitor = new
 ImprovedTemperatureMonitor(reader,control)

 when: "we ask the status of temperature control"
 monitor.readSensor()
 monitor.readSensor()

 then: "the alarm should sound"
 0 * control.shutdownReactor()
 1 * control.activateAlarm()
}

def "If current temperature difference is more than 50 degrees the reactor
 shuts down"() {
 given: "that temperature readings are not within limits"
 TemperatureReadings prev = new TemperatureReadings(sensor1Data:20,
 sensor2Data:40,sensor3Data:80)
 TemperatureReadings current = new TemperatureReadings(sensor1Data:30,
 sensor2Data:10,sensor3Data:160);
 TemperatureReader reader = Stub(TemperatureReader)

 reader.getCurrentReadings() >>> [prev, current]

 ReactorControl control = Mock(ReactorControl)
 ImprovedTemperatureMonitor monitor = new
 ImprovedTemperatureMonitor(reader,control)

 when: "we ask the status of temperature control"
 monitor.readSensor()
 monitor.readSensor()

 then: "the alarm should sound and the reactor should shut down"
 1 * control.shutdownReactor()
 1 * control.activateAlarm()
}

The code is similar to listing 3.9, but this time the class under test is injected with two
fake objects (a stub and a mock). The mock line is as follows:

ReactorControl control = Mock(ReactorControl)

Spock automatically creates a dummy class that has the exact signature of the
ReactorControl class. All methods by default do nothing (so there’s no need to do
anything special if that’s enough for your test).

 You let the class under test run its way, and at the end of the test, instead of testing
Spock assertions, you examine the interactions of the mock you created:

0 * control.shutdownReactor()
1 * control.activateAlarm()

Creating a stub
for an interface

Creating a mock
for a concrete class

lass under
 is injected
with mock
and stub. Mock methods are called

behind the scenes.

Verification of mock calls
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

85Isolating the class under test
■ The first line says, “After this test is finished, I expect that the number of times
the shutdownReactor() method was called is zero.”

■ The second line says, “After this test is finished, I expect that the number of
times the activateAlarm() method was called is one.”

This is equivalent to the business requirements that dictate what would happen
depending on different temperature variations.

 Using both mocks and stubs, you’ve seen how it’s possible to write a full test for the
temperature system without shutting down the reactor each time your unit test runs.
The reactor scenario might be extreme, but in your programming career, you may
already have seen Java modules with side effects that are difficult or impossible to test
without the use of mocking. Common examples are as follows:

■ Charging a credit card
■ Sending a bill to a client via email
■ Printing a report
■ Booking a flight with an external system

Any Java API that has severe side effects is a natural candidate for mocking. I’ve only
scratched the surface of what’s possible with Spock mocks. In chapter 6, you’ll see
many more advanced examples that also demonstrate how to capture the arguments
of mocked calls and use them for further assertions, or even how a stub can respond
differently according to the argument passed.

Mocking with Mockito

For comparison, I’ve included in the GitHub source code the same test with JUnit/
Mockito in case you want to compare it with listing 3.11 and draw your own conclu-
sions. Mockito was one of the inspirations for Spock, and you might find some simi-
larities in the syntax. Mockito is a great mocking framework, and much thought has
been spent on its API. It sometimes has a strange syntax in more-complex examples
(because it’s still limited by Java conventions). Ultimately, however, it’s Java’s ver-
bosity that determines the expressiveness of a unit test, regardless of Mockito’s
capabilities.

For example, if you need to create a lot of mocks that return Java maps, you have to
create them manually and add their elements one by one before instructing Mockito
to use them. Within Spock tests, you can create maps in single statements (even in
the same line that stubbing happens), as you’ve seen in Chapter 2.

Also, if you need a parameterized test with mocks (as I’ll show in the next section),
you have to combine at least three libraries (JUnit plus Mockito plus JUnitParams) to
achieve the required result.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

86 CHAPTER 3 A tour of Spock functionality

Input te
with p

C

Cl
test i

w

ns
3.3.5 Combining mocks and stubs in parameterized tests

As a grand finale of this Spock tour, I’ll show you how to easily combine parameter-
ized tests with mocking/stubbing in Spock. I’ll again use the temperature scenario
introduced in listing 3.10. Remember the requirements of this system:

■ If the temperature difference is larger than 20 degrees (higher or lower), the
alarm sounds.

■ If the temperature difference is larger than 50 degrees (higher or lower), the
alarm sounds and the reactor shuts down automatically.

We have four cases as far as temperature is concerned, and three temperature sensors.
Therefore, a full coverage of all cases requires at least 12 unit tests. Spock can com-
bine parameterized tests with mocks/stubs, as shown in the following listing.

def "Testing of all 3 sensors with temperatures that rise and fall"() {
 given: "various temperature readings"
 TemperatureReadings prev =
 new TemperatureReadings(sensor1Data:previousTemp[0],
 sensor2Data:previousTemp[1], sensor3Data:previousTemp[2])
 TemperatureReadings current =
 new TemperatureReadings(sensor1Data:currentTemp[0],
 sensor2Data:currentTemp[1], sensor3Data:currentTemp[2]);
 TemperatureReader reader = Stub(TemperatureReader)

 reader.getCurrentReadings() >>> [prev, current]

 ReactorControl control = Mock(ReactorControl)
 ImprovedTemperatureMonitor monitor = new
 ImprovedTemperatureMonitor(reader,control)

 when: "we ask the status of temperature control"
 monitor.readSensor()
 monitor.readSensor()

 then: "the alarm should sound and the reactor should shut down if
 needed"
 shutDown * control.shutdownReactor()
 alarm * control.activateAlarm()

 where: "possible temperatures are:"
 previousTemp | currentTemp || alarm | shutDown
 [20, 30, 40]| [25, 15, 43.2] || 0 | 0
 [20, 30, 40]| [13.3, 37.8, 39.2] || 0 | 0
 [20, 30, 40]| [50, 15, 43.2] || 1 | 0
 [20, 30, 40]| [-20, 15, 43.2] || 1 | 0
 [20, 30, 40]| [100, 15, 43.2] || 1 | 1
 [20, 30, 40]| [-80, 15, 43.2] || 1 | 1
 [20, 30, 40]| [20, 55, 43.2] || 1 | 0
 [20, 30, 40]| [20, 8 , 43.2] || 1 | 0
 [20, 30, 40]| [21, 100, 43.2] || 1 | 1

Listing 3.12 Mocking/stubbing in a Spock parameterized test

mperature
arameters

reation of
dummy

 interface

Instrumenting return
value of interface

Mocking of
concrete classass under

s injected
ith mock
and stub

Class under test calls stub
and mock behind the scenes

Verification of mock
using parameters

All parameter variatio
and expected results
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

87Summary
 [20, 30, 40]| [22, -40, 43.2] || 1 | 1
 [20, 30, 40]| [20, 35, 76] || 1 | 0
 [20, 30, 40]| [20, 31 ,13.2] || 1 | 0
 [20, 30, 40]| [21, 33, 97] || 1 | 1
 [20, 30, 40]| [22, 39, -22] || 1 | 1
}

This code combines everything you’ve learned in this chapter. It showcases the
following:

■ The expressiveness of Spock tests (clear separation of test phases)
■ The easy tabular format of parameters (matching business requirements)
■ The ability to fake both input and output of the class under test

As an exercise, try replicating this functionality using Java and JUnit in fewer lines of
code (statements). As I promised you at the beginning of the book, Spock is a cohe-
sive testing framework that contains everything you need for your unit tests, all
wrapped in friendly and concise Groovy syntax.

3.4 Summary
■ Spock tests have a clear structure with explicit given-when-then blocks.
■ Spock tests can be named with full English sentences.
■ JUnit reporting tools are compatible with Spock tests.
■ Spock tests allow for parameterized tests with the where: block.
■ Parameters in Spock tests can be written directly in a tabular format (complete

with header).
■ Unlike JUnit, Spock can have an unlimited number of parameterized tests in

the same class.
■ A stub is a fake class that can be programmed with custom behavior.
■ A mock is a fake class that can be examined (after the test is finished) for its

interactions with the class under test (which methods were called, what the
arguments were, and so forth).

■ Spock can stub classes/interfaces and instrument them to return whatever you
want.

■ The triple-right-shift/unsigned shift (>>>) operator allows a stub to return dif-
ferent results each time it’s called.

■ Spock can mock classes/interfaces and automatically record all invocations.
■ Spock can verify the number of times a method of a mock was called.
■ Combining stubs, mocks, and multiple parameters in the same Spock test is easy.

Licensed to Stephanie Bernal <nordicka.n@gmail.com>

88 CHAPTER 3 A tour of Spock functionality
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

Part 2

Structuring Spock tests

This part contains the principal Spock knowledge. With the foundations out
of the way, you’re ready to see the Spock syntax in all its glory, particularly the
different parts of a Spock unit test and how they can be combined for various
cases.

 Chapter 4—the central chapter of the whole book—shows the individual
parts of a Spock unit test (which are called blocks), their purpose, significance,
and expected structure. This chapter also explains the lifecycle of a Spock test,
the documentation annotations, and the facilities offered by Spock that affect
the readability of a unit test. Make sure that you’ve mastered the topics of this
chapter before moving on to the rest of the book.

 Chapter 5 focuses on parameterized tests. Parameterized tests are unit tests that
always test the same scenario with different input and output parameters.
Depending on your application, you may have one or two parameterized tests
(among your vanilla unit tests), or you may be overwhelmed with parameterized
tests of multiple parameter combinations. Parameterized tests in Spock are a
breath of fresh air compared to existing solutions, as Spock allows you to directly
embed into source code the business description of input/output parameters.

 Chapter 6 focuses on the mocking capabilities of Spock. Unlike other test
frameworks, Spock has built-in support for creating mocks without the need of
an external library. The way it sets up mocks and instructs them on their
expected behavior is one of the huge changes that set it apart from its competi-
tors. If you’ve already worked with Mockito, you’ll truly appreciate the simplicity
of Spock mocking. Again, depending on your application, you may need mock-
ing in a few special cases or in all your unit tests.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

90 CHAPTER

Licensed to Stephanie Bernal <nordicka.n@gmail.com>

Writing unit
tests with Spock
All the Spock tests you’ve seen so far have been presented to you as a finished unit
test, with no explanation of how to reach that particular code structure. You’re
probably eager to create your own Spock tests from scratch. In this chapter, you’ll
see all the building blocks that compose a Spock test and how they fit together (var-
ious combinations are possible).

 You’ll also learn about the lifecycle of a Spock test and how to interact with its
various phases. Finally, you’ll see some tricks for handling lengthy Spock tests and
making them more readable (a common issue in large enterprise projects).

4.1 Understanding Spock from the ground up
At the lowest level, a Spock test method is highly characterized by its individual
blocks. This term is used for the code labels inside a test method. You’ve already

This chapter covers
■ Working with Spock blocks
■ Understanding the lifecycle of a test
■ Improving readability of Spock tests
■ Using reusable JUnit features
91

Licensed to Stephanie Bernal <nordicka.n@gmail.com>

92 CHAPTER 4 Writing unit tests with Spock

T
blo

d

seen the given-when-then blocks multiple times in the previous chapters, as shown in
the following listing.

def "Adding two and three results in 5"() {
 given: "the integers two and three"
 int a = 3
 int b = 2

 when: "they are added"
 int result = a + b

 then: "the result is five"
 result == 5
}

Apart from the given-when-then blocks, Spock offers several other blocks that express
different test semantics. The full list is shown in table 4.1.

The last column shows the percentage of your unit tests that should contain each
block. This number isn’t scientific, and is based only on my experience. Depending
on your application, your numbers will be different, but you can get an overall indica-
tion of the importance of each block.

4.1.1 A simple test scenario

I hope you enjoyed the nuclear reactor example of the previous chapter. In this chap-
ter, you’ll get down to earth with a more common1 system that needs testing. The Java

Listing 4.1 Spock blocks inside a test method

Table 4.1 Available Spock blocks

Spock block Description Expected usage

given: Creates initial conditions 85%

setup: An alternative name for given: 0% (I use given:)

when: Triggers the action that will be tested 99%

then: Examines results of test 99%

and: Cleaner expression of other blocks 60%

expect: Simpler version of then: 20%

where: Parameterized tests 40%

cleanup: Releases resources 5%

1 ...and more boring. I know some of you were waiting for the software that tracks trajectories of nuclear missiles
in order to launch countermeasures (as teased in chapter 1). Sorry to disappoint you.

Spock test
method

The given: block
and its description

he when:
ck and its
escription

The then: block
and its description
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

93Understanding Spock from the ground up
system you’ll test is an electronic shop that sells computer products via a website,
which I guess is more familiar to you than the internals of a nuclear reactor. You can
see an overview of the system in figure 4.1.

 I’ll show you most Spock blocks by testing the base scenario, in which a user adds
one or more products in an electronic basket. The basket keeps the total weight (for
shipping purposes) and the price of all products selected by the user. The class under
test is that electronic basket. The collaborator class is the product, as shown in the fol-
lowing listing.

public class Product {
 private String name;
 private int price;
 private int weight;
 [...getters and setters here]
}

public class Basket {

 public void addProduct(Product product)
 {
 addProduct(product,1);
 }

 public void addProduct(Product product, int times)
 {
 [...code redacted for brevity]
 }

 public int getCurrentWeight()
 {
 [...code redacted for brevity]
 }

Listing 4.2 Java skeleton for an electronic basket

Buyer

Checkout
Basket

Products

Figure 4.1 Buying products in an electronic shop

All products sold are
defined with this class.

Triggered by the UI when
the user selects a product

Needed for shipping
calculations
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

94 CHAPTER 4 Writing unit tests with Spock

Prep
 un
 public int getProductTypesCount()
 {
 [...code redacted for brevity]
 }
}

Notice that this code is used only for illustration purposes. A production-ready e-shop
would be much different. Now let’s see all Spock blocks that you can use in your unit
tests.

4.1.2 The given: block

You’ve already seen the given: block multiple times in previous chapters of the book.
The given: block should contain all initialization code that’s needed to prepare your
unit test. The following listing shows a unit test that deals with the weight of the basket
after a product is selected by the user.

def "A basket with one product has equal weight"() {
 given: "an empty basket and a TV"
 Product tv = new Product(name:"bravia",price:1200,weight:18)
 Basket basket = new Basket()

 when: "user wants to buy the TV"
 basket.addProduct(tv)

 then: "basket weight is equal to the TV"
 basket.currentWeight == tv.weight
 }

The given: block sets up the scene for the test, as shown in figure 4.2. Its function is
to get everything ready just before the method(s) that will be tested is/are called.

 Sometimes it’s tempting to place this initialization code in the when: block instead,
and completely skip the given: block. Although you can have Spock tests without a
given: block, I consider this a bad practice2 because it makes the test less readable.

Listing 4.3 The given-when-then triad

2 An exception to this rule is a simple test with just the expect: block. That’s why I have 85% in expected
usage of the given: block.

Needed for
sale analytics

are the
it test.

Trigger the action
that will be tested.

Examine the results.

An empty basket
and a TV

given: when:

User wants
a TV

then:

Basket weight
equals TV weight

given: block prepares a test.
Figure 4.2 The given:
block prepares a test.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

95Understanding Spock from the ground up

Prep
 un
Unfortunately, in large enterprise projects, the code contained in the given: block
can easily get out of hand. Complex tests require a lot of setup code, and often you’ll
find yourself in front of a huge given: block that’s hard to read and understand.
You’ll see some techniques for managing that initialization code in a more manage-
able manner later in this chapter and also in chapter 8.

4.1.3 The setup: block

The setup: block is an alias for the given: block. It functions in exactly the same way.
The following listing contains the same unit test for the basket weight.

def "A basket with one product has equal weight (alternative)"() {
 setup: "an empty basket and a TV"
 Product tv = new Product(name:"bravia",price:1200,weight:18)
 Basket basket = new Basket()

 when: "user wants to buy the TV"
 basket.addProduct(tv)

 then: "basket weight is equal to the TV"
 basket.currentWeight == tv.weight
}

Using setup: or given: is a semantic choice and makes absolutely no difference to
the underlying code or how the Spock test will run. Choosing between setup: and
given: for the initialization code is a purely personal preference (see figure 4.3).

Rewrite credit card billing example with a given: block

As a quick exercise, look at listing 1.8 in chapter 1 (the example with credit card billing)
and rewrite it correctly, by properly constructing a given: block. Some examples in
chapter 2 are also missing the given: block. Try to find them and think how you should
write them correctly.

Listing 4.4 Using the setup alias

are the
it test.

Trigger the action
that will be tested.

Examine the results.

An empty basket
and a TV

given:
setup: when:

User wants
a TV

then:

Basket weight
equals TV weight

given: blocks function exactly the
same as setup: blocks. They both
prepare a test.

Figure 4.3 The given: and setup: blocks
do exactly the same thing in Spock tests.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

96 CHAPTER 4 Writing unit tests with Spock
I tend to use the given: block, because I believe that the sentence flow is better
(given-when-then). Also, the setup: block might be confusing with some of the life-
cycle methods that you’ll see later in this chapter.

4.1.4 The when: block

The when: block is arguably the most important part of a Spock test. It contains the
code that sets things in motion by triggering actions in your class under test or its col-
laborators (figure 4.4). Its code should be as short as possible, so that anybody can eas-
ily understand what’s being tested.

When I read an existing Spock test, I sometimes find myself focusing directly on the
when: block, in order to understand the meaning of the test (bypassing completely
the given: block).

In listing 4.4, the when: block is a single statement, so it’s easy to understand what’s
being tested. Even though the e-shop example is basic, the same concept should apply
to your when: blocks. The contents should be one “action.” This action doesn’t have

The importance of the when: block

Every time you finish writing a Spock test, your first impulse should be to check the
contents of the when: block. It should be as simple as possible. If you find that it
contains too much code or triggers too many actions, consider refactoring its contents.

Put yourself in the shoes of the next developer who comes along and sees your Spock
test. How long will it take to understand the actions performed by the when: block?

given: then:

==

when:

User wants a TV
and a camera

20 kg 18 kg 2 kg

Figure 4.4 The when: block triggers the test and should be as simple as possible.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

97Understanding Spock from the ground up
to be a single statement, but it must capture a single concept in your unit test. To
explain this idea better, the following listing shows a bad use of a when: block.

def "Test index assign"() {
 setup:
 List<String> list = ["IDCODIGO", "descripcion", "field_1",
 "FAMILIA", "MARCA"]
 ArticuloSunglassDescriptor.reset()

 when:
 Integer ix = 0
 for (String tag in list) {
 for (ArticuloSunglassDescriptor descriptor in
 ArticuloSunglassDescriptor.values()) {
 if (descriptor.equals(tag)) {
 descriptor.index = ix
 break
 }
 }
 ix++
 }

 then:
 ArticuloSunglassDescriptor.family.index == 3

 }

The code comes from a Spock test I found in the wild.3 How long does it take you to
understand what this Spock test does? Is it easy to read the contents of the when: block?

 What’s the class under test here? Notice also that all three blocks (setup-when-
then) have no text description (another practice that I find controversial). This makes
understanding the test even harder.

 You’ll see some techniques for refactoring when: blocks later in this chapter. For
now, keep in mind that the code inside the when: block should be short and sweet, as
seen in the following listing.

def "A basket with two products weights as their sum"() {
 given: "an empty basket, a TV and a camera"
 Product tv = new Product(name:"bravia",price:1200,weight:18)

Listing 4.5 A nontrivial when: block—don’t do this

3 Again I mean no disrespect to the author of the code. If you’re reading this, I thank you for providing a real
Spock test available on the internet for my example.

Listing 4.6 Descriptive when: blocks

when: block with no text description
and unclear trigger code
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

98 CHAPTER 4 Writing unit tests with Spock
 Product camera = new Product(name:"panasonic",price:350,weight:2)
 Basket basket = new Basket()

 when: "user wants to buy the TV and the camera"
 basket.addProduct(tv)
 basket.addProduct(camera)

 then: "basket weight is equal to both camera and tv"
 basket.currentWeight == (tv.weight + camera.weight)
}

Even though the when: block is two statements here, they both express the same concept
(adding a product to a basket). Understanding the when: block in this example is easy.

4.1.5 The then: block

The then: block is the last part of the given-when-then trinity. It contains one or more
Groovy assertions (you’ve seen them in chapter 2) to verify the correct behavior of
your class under test, as shown in figure 4.5.

Again, you’re not limited to a single statement, but all assertions should examine the
same thing. If you have unrelated assertions that test different things, your Spock test
should break up into smaller ones.

 Note also that Spock has an automatic safeguard against Groovy asserts that aren’t
really asserts (a common mistake). Assume that I wrote my Spock test like the follow-
ing listing.

def "A basket with two products weights as their sum"() {
 given: "an empty basket, a TV and a camera"
 Product tv = new Product(name:"bravia",price:1200,weight:18)
 Product camera = new Product(name:"panasonic",price:350,weight:2)

Listing 4.7 Invalid then: block

when: block with
text description and
clear trigger code

The basket’s weight is the same as the
sum of the products’ weights.

given: then:

==

when:

20 kg 18 kg 2 kg

Figure 4.5 The then: block verifies the behavior of the class under test.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

99Understanding Spock from the ground up

 a
cr

colla
 Basket basket = new Basket()
 when: "user wants to buy the TV and the camera"
 basket.addProduct(tv)
 basket.addProduct(camera)

 then: "basket weight is equal to both camera and tv"
 basket.currentWeight = (tv.weight + camera.weight)
}

Running this test prints the following:

>mvn test
> BasketWeightSpec.groovy: 45: Expected a condition, but found an
assignment. Did you intend to write '==' ? @ line 45, column 3.
[ERROR] basket.currentWeight = (tv.weight + camera.weight)

This is a nice touch of Spock, and although it’s not bulletproof, it provides effective
feedback when you start writing your first Spock tests.

4.1.6 The and: block

The and: block is a strange one indeed. It might seem like syntactic sugar at first sight
because it has no meaning on its own and just extends other blocks, but it’s important
as far as semantics are concerned. It allows you to split all other Spock blocks into dis-
tinctive parts, as shown in the next listing, making the code more understandable.

def "A basket with three products weights as their sum"() {
 given: "an empty basket"
 Basket basket = new Basket()

 and: "several products"
 Product tv = new Product(name:"bravia",price:1200,weight:18)
 Product camera = new Product(name:"panasonic",price:350,weight:2)
 Product hifi = new Product(name:"jvc",price:600,weight:5)

 when: "user wants to buy the TV and the camera and the hifi"
 basket.addProduct tv
 basket.addProduct camera
 basket.addProduct hifi

 then: "basket weight is equal to all product weight"
 basket.currentWeight == (tv.weight + camera.weight + hifi.weight)
}

Here you use the and: block to distinguish between the class under test (the Basket
class) and the collaborators (the products), as illustrated in figure 4.6. In larger Spock
tests, this is helpful because, as I said already, the initialization code can quickly grow
in size in a large enterprise application.

Listing 4.8 Using and: to split the given: block

Mistake! It should be
== instead of =.

given: block deals only
with the class under test.

nd: block
eates the
borators.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

100 CHAPTER 4 Writing unit tests with Spock
It’s also possible to split the when: block, as shown in the following listing.

def "A basket with three products weights as their sum (alternate)"() {
 given: "an empty basket, a TV,a camera and a hifi"
 Basket basket = new Basket()
 Product tv = new Product(name:"bravia",price:1200,weight:18)
 Product camera = new Product(name:"panasonic",price:350,weight:2)
 Product hifi = new Product(name:"jvc",price:600,weight:5)

 when: "user wants to buy the TV.."
 basket.addProduct tv

 and: "..the camera.."
 basket.addProduct camera

 and: "..and the wifi"
 basket.addProduct hifi

 then: "basket weight is equal to all product weight"
 basket.currentWeight == (tv.weight + camera.weight + hifi.weight)
}

This example might be trivial, but it also showcases the capability to have more than
one and: block. It’s up to you to decide how many you need. In the case of the when:
block, always keep in mind the rule outlined in the previous section: if your and:

Listing 4.9 Using and: to split the when: block

This and: block extends the given: block,
to effectively distinguish between the
class being tested (basket) and its
collaborators (the products).

given: then:

==

An empty basket A TV, a camera, a hifi

when:

25 kg 18 kg 2 kg 5 kg

and:

Figure 4.6 The and: block allows you to include collaborator classes in a test.

Original
when: block

Extension of
when: block
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

101Understanding Spock from the ground up

Orig
blocks that come after when: perform unrelated triggers, you need to simplify the
when: block. Figure 4.7 demonstrates this scenario.

 The most controversial usage of the and: block occurs when it comes after a then:
block, as shown in the next listing.

def "A basket with three products has correct weight and count
 (controversial)"() {
 given: "an empty basket, a TV,a camera and a hifi"
 Basket basket = new Basket()
 Product tv = new Product(name:"bravia",price:1200,weight:18)
 Product camera = new Product(name:"panasonic",price:350,weight:2)
 Product hifi = new Product(name:"jvc",price:600,weight:5)

 when: "user wants to buy the TV and the camera and the hifi"
 basket.addProduct tv
 basket.addProduct camera
 basket.addProduct hifi

 then: "the basket weight is equal to all product weights"
 basket.currentWeight == (tv.weight + camera.weight + hifi.weight)

 and: "it contains 3 products"
 basket.productTypesCount == 3
}

Listing 4.10 Using and: as an extension to a then: block

and:

You can have multiple and: blocks. These and: blocks
split up the when: blocks into related triggers.

given: then:

==

when:

25kg 18 kg 2 kg 5 kg

and:

The user wants to buy the TV, and the camera, and the hifi.

Figure 4.7 You can concatenate multiple and: blocks to a when: block.

inal then:
block

Extension of
then: block
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

102 CHAPTER 4 Writing unit tests with Spock
In this example, I use the and: block to additionally verify the number of products
inside the basket, as illustrated in figure 4.8.

 Whether this check is related to the weight of the basket is under discussion. Obvi-
ously, if the number of products inside the basket is wrong, its weight will be wrong as
well; therefore, you could say that they should be tested together.

 Another approach is to decide that the basket weight and number of products are
two separate things that need their own respective tests, as shown in figure 4.9.

and:given: then:

==

when:

25kg 18 kg
1

Products

2 kg 5 kg

The basket weight is the same as
the sum of products’ weights…

…and the basket has
three products.

2

3

Figure 4.8 Using an and: block with a then: block is possible but controversial. You could be testing two
unrelated things.

given: then:when:

==

Another test evaluates
weights in a then: block.

One then: block evaluates
the number of products.

given: then:

20 kg 18 kg 2 kg 5 kg

==

when:

Products

2

1

3

==

Figure 4.9 Instead of using an and: block with a then: block, consider writing two separate tests.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

103Understanding Spock from the ground up
There’s no hard rule on what’s correct and what’s
wrong here. It’s up to you to decide when to use an
and: block after a then: block. Keep in mind the
golden rule of unit tests: they should check one
thing.4 My advice is to avoid using and: blocks after
then: blocks, unless you’re sure of the meaning of
the Spock test. The and: blocks are easy to abuse if
you’re not careful.

4.1.7 The expect: block

The expect: block is a jack-of-all-trades in Spock
tests. It can be used in many semantic ways, and
depending on the situation, it might improve or worsen the expressiveness of a
Spock test.

 At its most basic role, the expect: block combines the meaning of given-when-
then. Like the then: block, it can contain assertions and will fail the Spock test if any
of them don’t pass. It can be used for simple tests that need no initialization code (fig-
ure 4.10), and their trigger can be tested right away, as shown in the following listing.

def "An empty basket has no weight"() {
 expect: "zero weight when nothing is added"
 new Basket().currentWeight == 0
}

More preferably, the expect: block should replace only the when: and then: blocks,
as shown in figure 4.11.

4 Alternatively, a unit test should fail for a single reason.

Listing 4.11 Trivial tests with the expect: block

expect:

== 0 kg

Figure 4.10 An expect: block
can replace given:, when:, and
then: blocks.

Only the expect:
block is present.

More realistically, an expect:
block replaces just the when:
and then: blocks.

expect:

== 0 kg

given:

Figure 4.11 An expect: usually
replaces a when: and a then: block.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

104 CHAPTER 4 Writing unit tests with Spock
This is my preferred use of the expect: block, as shown in the following listing.

def "An empty basket has no weight (alternative)"() {
 given: "an empty basket"
 Basket basket = new Basket()

 expect: "that the weight is 0"
 basket.currentWeight == 0
}

Because the expect: block accepts Groovy assertions, it can be used in other creative
ways that distinguish it from the then: block that typically ends a Spock test. The fol-
lowing listing shows a given-expect-when-then test (as seen in the excellent presenta-
tion “Idiomatic Spock”5 found at https://github.com/robfletcher/idiomatic-spock).

def "A basket with two products weights as their sum (precondition)"() {
 given: "an empty basket, a TV and a camera"
 Product tv = new Product(name:"bravia",price:1200,weight:18)
 Product camera = new Product(name:"panasonic",price:350,weight:2)
 Basket basket = new Basket()

 expect:"that nothing should be inside"
 basket.currentWeight == 0
 basket.productTypesCount == 0

 when: "user wants to buy the TV and the camera"
 basket.addProduct tv
 basket.addProduct camera

 then: "basket weight is equal to both camera and tv"
 basket.currentWeight == (tv.weight + camera.weight)
}

In this example, you use the expect: block to verify the initial state of the basket
before adding any product. This way, the test fails faster if a problem with the basket
occurs.

4.1.8 The cleanup: block

The cleanup: block should be seen as the “finally” code segment of a Spock test. The
code it contains will always run at the end of the Spock test, regardless of the result
(even if the test fails). The following listing shows an example of this.

Listing 4.12 expect: block replaces when: and then:

Listing 4.13 Using expect: for preconditions

5 The presentation is by Robert Fletcher, but the specific example of expect: is by Luke Daley (co-author of
the Spock framework and creator of Geb, which you’ll see in chapter 7).

expect: block performs
the assertion of the test

expect: block performs
intermediate assertions

then: block examines
the final result
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

https://github.com/robfletcher/idiomatic-spock

105Converting requirements to Spock tests

th
exam

fin

def "A basket with one product has equal weight"() {
 given: "an empty basket and a TV"
 Product tv = new Product(name:"bravia",price:1200,weight:18)
 Basket basket = new Basket()

 when: "user wants to buy the TV"
 basket.addProduct(tv)

 then: "basket weight is equal to the TV"
 basket.currentWeight == tv.weight

 cleanup: "refresh basket resources"
 basket.clearAllProducts()
}

Assume for a moment that the implementation of the basket also keeps temporary
files for the current contents for reliability purposes (or sends analytics to another
class—you get the idea). The basket comes with a clearAllProducts() method that
empties the basket and releases the resources (deletes temporary files) it holds. By
placing this method in the cleanup: block, you ensure that this method always runs,
even if the code stops at the then: block because of failure.

 The cleanup: block concludes all possible Spock blocks. Continuing with the bot-
tom-up approach, let’s see where these blocks go in your source code.

4.2 Converting requirements to Spock tests
Spock blocks embody the low-level mechanics of unit tests. You should also pay equal
attention to the methods and classes that contain them. In large enterprise projects,
organization and naming of unit tests play a crucial role in easy maintenance and
effortless refactoring.

 Spock also offers metadata that you can use to annotate your tests for extra clarity.
The advantage that this metadata has over normal Java comments is that it can be
extracted by reporting tools.

4.2.1 Explaining the feature examined in a Spock test

A unique characteristic of Spock test methods is the capability to name them by using
full English sentences. This is a huge advantage for Spock tests because it makes read-
ing tests so much easier (even for nontechnical colleagues).

Listing 4.14 Using cleanup: to release resources even if test fails

The where: block is shown in chapter 5

If you’ve been paying close attention, you must have noticed that I haven’t said any-
thing about the where: block. The where: block is used exclusively for parameterized
tests. There are so many things to discuss about parameterized Spock testing that
it has its own chapter. Chapter 5 covers parameterized tests and the possible forms
of the where: block, so keep reading to get the full picture on all Spock blocks.

cleanup: block will always
run, even if then: fails.

en: block
ines the

al result.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

106 CHAPTER 4 Writing unit tests with Spock
 I’ve used this technique since the first chapter and consider it a groundbreaking fea-
ture of Spock, compared to the status quo. The following listing provides an example.

def "A basket with one product has equal weight"() {
 given: "an empty basket and a TV"
 Product tv = new Product(name:"bravia",price:1200,weight:18)
 Basket basket = new Basket()

 when: "user wants to buy the TV"
 basket.addProduct(tv)

 then: "basket weight is equal to the TV"
 basket.currentWeight == tv.weight
}

It’s your job to make sure that this text is understandable (even out of context). Ide-
ally, it should match the specifications given by business analysts. If you don’t have
detailed specifications (and you should), the method name should describe what’s
being tested in a nontechnical way.

 The names of Spock methods will appear in test results and coverage reports, so
always assume that somebody will read this text without having direct access to the
code of the implementation.

4.2.2 Marking the class under test inside a Spock test

In most unit tests, initialization code prepares multiple classes and input data. The
class that will be tested and evaluated has more importance than its collaborators,
which are the classes that communicate with it, but not under test (either because
they have their own tests or because they’re assumed to be correct).

 To distinguish this special class, Spock offers the @Subject annotation, as shown is
the next listing. In this example, the class under test is the Basket class.

def "A basket with two products weights as their sum (better)"() {
 given: "an empty basket"
 @Subject
 Basket basket = new Basket()

 and: "several products"
 Product tv = new Product(name:"bravia",price:1200,weight:18)
 Product camera = new Product(name:"panasonic",price:350,weight:2)

 when: "user wants to buy the TV and the camera and the hifi"
 basket.addProduct tv
 basket.addProduct camera

 then: "basket weight is equal to all product weight"
 basket.currentWeight == (tv.weight + camera.weight)
}

Listing 4.15 Test method describes exactly what is being tested

Listing 4.16 Marking the class under test

Full English text

The subject of this test
is the Basket class.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

107Converting requirements to Spock tests

Descri
in full En

sent
In this simple example, it might be easy to understand that the Basket class is the one
being tested (especially by looking at the when: and then: blocks), but in larger unit
tests, the class under test might not be obvious.

 At the time of writing, there’s no reporting tool that takes into account the @Sub-
ject annotation, but you should use it anyway to improve readability by other pro-
grammers. In current reporting tools, you can’t see which class is under test and
you’re forced to look at the source code to identify it. Hopefully, this limitation will be
amended soon by newer versions of test reporting tools.

4.2.3 Describing the Spock unit test as a whole

You now have multiple test methods (features in Spock terminology) and want to
group them in a Groovy class. This class is a specification, as you can see in the following
listing.

@Title("Unit test for basket weight")
class BasketWeightSpec extends spock.lang.Specification{

 [...test methods here redacted for brevity...]
}

The class that contains all the test methods is a Groovy class that must extend
spock.lang.Specification. This makes it a Spock test. The name of the class can be
anything, but it’s good practice to end the name in Spec (for example, BasketWeight-
Spec). You can pick any ending you want, as long as it’s the same on all your Spock
tests, because it makes it easier for the build system (e.g., Maven) to detect Spock tests.

 For technical reasons, Spock can’t allow you to name the class with full English text
like the test methods. To remedy this limitation, it instead offers the @Title annota-
tion, which you can use to give a human-readable explanation of the features that
make up this specification.

As an extra bonus, Spock also offers the @Narrative annotation, which can provide
even more text that describes what the test does, as shown in the following listing.

Listing 4.17 Writing a Spock specification

Naming .groovy files using the expected Java convention

Unlike Java, Groovy doesn’t require the name of the class and the name of the file
on the disk to be the same. You can place the BasketWeightSpec class in a file called
MyBasketWeightUnitTest.groovy if that’s what you want. For simplicity, I still urge you
to use the Java convention because it makes navigating Spock tests much easier.
Therefore, the BasketWeightSpec class should be placed in a file named Basket-
WeightedSpec.groovy.

ption
glish
ence

Groovy class extends
Specification.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

108 CHAPTER 4 Writing unit tests with Spock

Single
descri

o

e
r

@Narrative(""" A empty basket starts with no
weight. Adding products to the basket
increases its weight. The weight is
then used for billing during shipping calculations.
Electronic goods have always zero weight.
""")
@Title("Unit test for basket weight")
@Subject(Basket)
class BasketWeightDetailedSpec extends spock.lang.Specification{
 [...test methods here redacted for brevity...]
}

This listing uses a Groovy multiline string that allows you to insert as many lines of text
as you want (a feature that your business analysts might love). In Groovy, multiline
strings need triple quotes.

 Listing 4.18 also shows the application of the @Subject annotation on the whole
class. If you find that all your test methods focus on the same class (which is the usual
case), you can apply the @Subject annotation at the top of the Spock test instead of
placing it multiple times in the test methods. The class under test is then used as an
argument (no need to add the .class extension).

 Notice that for brevity I omit the @Title and @Narrative annotations (and usually
@Subject as well) in this book’s examples. You should always attempt to include them
in your Spock tests. I tend to look at @Title and @Subject as a compulsory requirement
for a Spock test. @Narrative is good to have, but not essential for all kinds of tests.

4.2.4 Revising our view of a Spock test

Because I started explaining Spock elements by using a bottom-up approach, now that
we’ve reached the top, let’s see how to revise all parts of a Spock test, as shown in
figure 4.12.

Listing 4.18 Writing a full Spock specification

Longer
description
of unit testGroovy

multiline
string-line

ption
f test

Information on th
class under test fo
all test methods

A Spock specification is a
Groovy class that contains
one or more features (e.g.,
BasketWeightDetailedSpec).

Each feature (test method)
has Spock blocks; for example,
the basic given:, when:, and
then: blocks to test basket
and product weights.

A feature is a
test method.

18 kg 18 kg

==

given: when: then:

Figure 4.12 Blocks inside features (test methods) inside Specification (Groovy class)
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

109Exploring the lifecycle of a Spock test

Initia
is w

A Spock test is a Groovy class that extends spock.lang.Specification. It should be
marked with the @Title annotation to explain its purpose.

 The Spock test contains one or more test methods (features in Spock terminology)
that examine various aspects of the class under test. Test methods can be named directly
with full English sentences. The class under test should be marked with the @Subject
annotation, either in each test method individually or at the top of the specification.

 Finally, each Spock feature (test method) is characterized by the Spock blocks it
contains. The most basic structure is the given-when-then blocks that prepare the test,
trigger the tested action, and examine the results.

 This diagram is useful for our next topic: the lifecycle of a Spock specification.

4.3 Exploring the lifecycle of a Spock test
When you create a unit test to examine the behavior of a specific class, you’ll find
yourself writing the same code over and over again in the given: block. This makes
sense because several test methods have the same initial state and only a different trig-
ger (the when: block). Instead of copying and pasting this behavior (and thus violating
the DRY 6 principle), Spock offers you several facilities to extract common precondi-
tions and post-conditions of tests in their own methods.

4.3.1 Setup and cleanup of a feature

In the Spock test that examines your imaginary electronic basket, I’ve duplicated the
code that creates products multiple times. This code can be extracted as shown in the
following listing.

class CommonSetupSpec extends spock.lang.Specification{

 Product tv
 Product camera

 def setup() {
 tv = new Product(name:"bravia",price:1200,weight:18)
 camera = new Product(name:"panasonic",price:350,weight:2)
 }

 def "A basket with one product weights as that product"() {
 [...code redacted for brevity purposes...]
 }

 def "A basket with two products weights as their sum"()
 [...code redacted for brevity purposes...]
 }
}

6 This acronym stands for don’t repeat yourself. See https://en.wikipedia.org/wiki/Don’t_repeat_yourself for
more information.

Listing 4.19 Extracting common initialization code

Common classes
are placed as fields. This method runs

automatically before
each test method.

lization code
ritten once.

Test methods
run after
initialization
code.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

https://en.wikipedia.org/wiki/Don’t_repeat_yourself

110 CHAPTER 4 Writing unit tests with Spock

This

auto
be

test
Spock will detect a special method called setup() and will run it automatically before
each test method. In a similar manner, Spock offers a cleanup() method that will run
after each test method finishes. A full example is shown in the following listing.

@Subject(Basket)
class CommonCleanupSpec extends spock.lang.Specification{

 Product tv
 Product camera
 Basket basket

 def setup() {
 tv = new Product(name:"bravia",price:1200,weight:18)
 camera = new Product(name:"panasonic",price:350,weight:2)
 basket = new Basket()
 }

 def "A basket with one product weights as that product"() {
 when: "user wants to buy the TV"
 basket.addProduct tv

 then: "basket weight is equal to all product weight"
 basket.currentWeight == tv.weight
 }

 def "A basket with two products weights as their sum"() {
 when: "user wants to buy the TV and the camera"
 basket.addProduct tv
 basket.addProduct camera

 then: "basket weight is equal to all product weight"
 basket.currentWeight == (tv.weight + camera.weight)
 }

 def cleanup()
 {
 basket.clearAllProducts()
 }
}

As with the cleanup: block, the cleanup() method will always run, regardless of the
result of the test. The cleanup() method will even run if an exception is thrown in a
test method.

4.3.2 Setup and cleanup of a specification

The code you place inside the setup() and cleanup() methods will run once for each
test method. If, for example, your Spock test contains seven test methods, the setup/
cleanup code will run seven times as well. This is a good thing because it makes each
test method independent. You can run only a subset of test methods, knowing they’ll
be correctly initialized and cleaned afterward.

Listing 4.20 Extracting common pre/post conditions

Common classes
are placed as fields.

 method
will run

matically
fore each
 method.

This method will run automatically
after each test method.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

111Exploring the lifecycle of a Spock test
 But sometimes you want initialization code to run only once before all test methods.
This is the usual case when you have expensive objects that will slow down the test if they
run multiple times. A typical case is a database connection that you use for integration
tests, but any long-lived expensive object is a good candidate for running only once.

 Spock supports this case as well, as shown in the following listing.

class LifecycleSpec extends spock.lang.Specification{

 def setupSpec() {
 println "Will run only once"
 }

 def setup() {
 println "Will run before EACH feature"
 }

 def "first feature being tested"() {
 expect: "trivial test"
 println "first feature runs"
 2 == 1 +1
 }

 def "second feature being tested"() {
 expect: "trivial test"
 println "second feature runs"
 5 == 3 +2
 }

 def cleanup() {
 println "Will run once after EACH feature"
 }

 def cleanupSpec() {
 println "Will run once at the end"
 }
}

If you run this unit test, it will print the following:

Will run only once
Will run before EACH feature
first feature runs
Will run once after EACH feature
Will run before EACH feature
second feature runs
Will run once after EACH feature
Will run once at the end

Listing 4.21 All Spock lifecycle methods

Compatibility with JUnit lifecycle methods

If you’re familiar with JUnit, you’ll notice that the Spock lifecycle methods work exactly
like the annotations @Before, @After, @BeforeClass, and @AfterClass. Spock hon-
ors these annotations as well, if for some reason you want to continue to use them.

Initialization for
expensive objects

Common code
for all tests

Test methods

Common cleanup
code for all tests

Finalization of
expensive objects
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

112 CHAPTER 4 Writing unit tests with Spock
Because setupSpec() and cleanupSpec() are destined to hold only long-lived objects
that span all the test methods, Spock allows code in these methods to access only static
fields (not recommended) and objects marked as @Shared, as you’ll see in the next
section.

4.3.3 Long-lived objects with the @Shared annotation

You can indicate to Spock which objects you want to survive across all test methods by
using the @Shared annotation. As an example, assume that you augment your elec-
tronic basket with a credit card processor:

public class CreditCardProcessor {

 public void newDayStarted()
 {
 [...code redacted for brevity..]
 }
 public void charge(int price)
 {
 [...code redacted for brevity..]
 }

 public int getCurrentRevenue()
 {
 [...code redacted for brevity..]
 }

 public void shutDown()
 {
 [...code redacted for brevity..]
 }
}

CreditCardProcessor is an expensive object. It connects to a bank back end and
allows your basket to charge credit cards. Even though the bank has provided dummy
credit card numbers for testing purposes, the initialization of the connection is slow. It
would be unrealistic to have each test method connect to the bank again. The follow-
ing listing shows the solution to this problem.

class SharedSpec extends spock.lang.Specification{

 @Shared
 CreditCardProcessor creditCardProcessor;

 BillableBasket basket

 def setupSpec() {
 creditCardProcessor = new CreditCardProcessor()
 }

Listing 4.22 Using the @Shared annotation

Will be created
only once

Will be created
multiple times

Expensive/slow
initialization
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

113Exploring the lifecycle of a Spock test

Shar
ca
 def setup() {
 basket = new BillableBasket()
 creditCardProcessor.newDayStarted()
 basket.setCreditCardProcessor(creditCardProcessor)
 }

 def "user buys a single product"() {
 given: "an empty basket and a TV"
 Product tv = new Product(name:"bravia",price:1200,weight:18)

 and: "user wants to buy the TV"
 basket.addProduct(tv)

 when: "user checks out"
 basket.checkout()

 then: "revenue is the same as the price of TV"
 creditCardProcessor.currentRevenue == tv.price
 }

 def "user buys two products"() {
 given: "an empty basket and a camera"
 Product camera = new
 Product(name:"panasonic",price:350,weight:2)

 and: "user wants to two cameras"
 basket.addProduct(camera,2)

 when: "user checks out"
 basket.checkout()

 then: "revenue is the same as the price of both products"
 creditCardProcessor.currentRevenue == 2 * camera.price
 }

 def cleanup() {
 basket.clearAllProducts()
 }

 def cleanupSpec() {
 creditCardProcessor.shutDown()
 }
}

Here you mark the expensive credit card processor with the @Shared annotation. This
ensures that Spock creates it only once. On the other hand, the electronic basket itself
is lightweight, and therefore it’s created multiple times (once for each test method).
Notice also that the credit card processor is closed down once at the end of the test.

4.3.4 Use of the old() method

The old() method of Spock is a cool trick, but I’ve yet to find a real example that
makes it worthwhile. I mention it here for completeness, and because if you don’t

Fast/cheap
initializationed object

n be used
normally.

Will run
multiple times

Will run
only once
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

114 CHAPTER 4 Writing unit tests with Spock

P

give

ock.the d

know how it works, you might think it breaks the Spock lifecycle principles. You use it
when you want your test to capture the difference from the previous state instead of
the absolute value, as shown in the following listing.

def "Adding a second product to the basket increases its weight"() {
 given: "an empty basket"
 Basket basket = new Basket()

 and: "a tv is already added to the basket"
 Product tv = new Product(name:"bravia",price:1200,weight:18)
 basket.addProduct(tv)

 when: "user gets a camera too"
 Product camera = new Product(name:"panasonic",price:350,weight:2)
 basket.addProduct(camera)

 then: "basket weight is updated accordingly"
 basket.currentWeight == old(basket.currentWeight) + camera.weight
}

Here you have a unit test that checks the weight of the basket after a second product is
added. You could check for absolute values in the then: block (assert that the basket
weight is the sum of two products), but instead you use the old() method and say to
Spock, “I expect the weight to be the same as before the when: block, plus the weight
of the camera.” Figure 4.13 illustrates this.

 The difference in expression is subtle, and if you find the old() method confus-
ing, there’s no need to use it at all.

Listing 4.23 Asserting with the old() method

roduct is
added in
n: block.

Second product is
added in when: blChecking

ifference
in weight

given:

20 kg18 kg 2 kg

==

and: then:when:

20 kg 2 kg18 kg

==

then:

then: block uses
old() to evaluate
weights using the
basket weight prior
to the when: block.

old(basket.currentWeight)

then: block evaluates
absolute values of
product weights in
the basket.

Figure 4.13 The old() method allows you to access values set before the when: block in a test.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

115Writing readable Spock tests
4.4 Writing readable Spock tests
Despite all the cool facilities offered by Groovy, your ultimate target when writing
Spock tests should be readability. Especially in large enterprise applications, the ease
of refactoring is greatly affected by the quality of existing unit tests. Because unit tests
also act as a live specification of the system, understanding Spock tests is crucial in
cases requiring you to read a unit test to deduce the expected behavior of the code.

 Knowing the basic techniques (for example, the Spock blocks) is only the first step
to writing concise and understandable unit tests. The second step is to use the basic
techniques effectively, avoiding the temptation of “sprinkling” unit test code with
Groovy tricks that add no real purpose to the test other than showing off.7

4.4.1 Structuring Spock tests

You saw all the Spock blocks at the beginning of the chapter. The given-when-then
cycle should be your mantra when you start writing your first Spock unit tests. You
might quickly discover that Spock doesn’t have many restrictions in regard to the
number and sequence of blocks inside a test method. But just because you can mix
and match Spock blocks doesn’t mean that you should.

 As an example, it’s possible to have multiple when-then blocks in a single test
method, as shown in the following listing.

def "Adding products to a basket increases its weight"() {
 given: "an empty basket"
 Basket basket = new Basket()

 and: "a two products"
 Product tv = new Product(name:"bravia",price:1200,weight:18)
 Product camera = new Product(name:"panasonic",price:350,weight:2)

 when: "user gets the camera"
 basket.addProduct(camera)

 then: "basket weight is updated accordingly"
 basket.currentWeight == camera.weight

 when: "user gets the tv too"
 basket.addProduct(tv)

 then: "basket weight is updated accordingly"
 basket.currentWeight == camera.weight + tv.weight
}

7 If you really want to show off one-liners, Groovy is not for you. Learn Perl.

Listing 4.24 Multiple when-then blocks

First pair of
when-then

Second pair of when-
then will be executed
in sequence.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

116 CHAPTER 4 Writing unit tests with Spock

Bloc
d

This pattern must be used with care. It can be used correctly as a way to test a
sequence of events (as demonstrated in this listing). If used incorrectly, it might also
mean that your test is testing two things and should be broken.

 Use common sense when you structure Spock tests. If writing descriptions next to
Spock blocks is becoming harder and harder, it might mean that your test is doing
complex things.

4.4.2 Ensuring that Spock tests are self-documenting

I’ve already shown you the @Subject and @Title annotations and explained that the
only reason they’re not included in all examples is to save space.

 What I’ve always included, however, are the descriptions that follow each Spock
block. Even though in Spock these are optional, and a unit test will run without them,
you should consider them essential and always include them in your unit tests. Take a
look at the following listing for a real-world antipattern of this technique.

def "Test toRegExp(Productos3.txt)" () {
 setup:
 String filePattern = 'PROD{MES}{DIA}_11.TXT'
 String regexp = FileFilterUtil.toRegExpLowerCase(filePattern)
 Pattern pattern = Pattern.compile(regexp)

 expect:
 StringUtils.trimToEmpty(filename).toLowerCase().matches(pattern) ==
 match

 where:
 filename << ['PROD.05-12.11.TXT', 'prod.03-21.11.txt',
 'PROD051211.TXT', 'prod0512_11.txt']
 match << [false, false, false, true]
}

This test lacks any kind of human-readable text. It’s impossible to understand what
this test does without reading the code. It’s also impossible to read it if you’re a non-
technical person. In this example, it’s a pity that the name of the test method isn’t a
plain English sentence (a feature offered natively by Spock). You could improve this
test by changing the block labels as follows:

setup: "given a naming pattern for product files"
expect: "that the file name matches regardless of spaces and capitalization"
where: "some possible file names are"

Always include in your Spock tests at least the block descriptions and make sure that
the test method name is human-readable.

Listing 4.25 Missing block descriptions—don’t do this

Unclear test
method name

ks without
escriptions
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

117Writing readable Spock tests

Che
weight o

pr
4.4.3 Modifying failure output

Readability shouldn’t be constrained to successful unit tests. Even more important is
the readability of failed tests. In a large application with legacy code and a suite of exist-
ing unit tests, a single change can break unit tests that you didn’t even know existed.

 You learned how Groovy asserts work in chapter 2 and how Spock gives you much
more information when a test fails. Although Spock automatically analyzes simple types
and collections, you have to provide more hints when you assert your own classes. As an
example, the following listing adds one of the products in the basket twice.

def "Adding products to a basket increases its weight"() {
 given: "an empty basket"
 ProblematicBasket basket = new ProblematicBasket()

 and: "two different products"
 Product laptop = new Product(name:"toshiba",price:1200,weight:5)
 Product camera = new Product(name:"panasonic",price:350,weight:2)

 when: "user gets a laptop and two cameras"
 basket.addProduct(camera,2)
 basket.addProduct(laptop)

 then: "basket weight is updated accordingly"
 basket.currentWeight == (2 * camera.weight) + laptop.weight
}

I’ve introduced a bug in the Basket class. When the test fails, you get the output
shown in figure 4.14.

 Because Basket.java is a class unknown to Spock, it can’t give you detailed infor-
mation about what went wrong. According to this result, the total weight of the basket

Listing 4.26 Adding a product twice in the basket

Two cameras
are inserted.

cks the
f three
oducts

Figure 4.14 Failed Spock test with custom class
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

118 CHAPTER 4 Writing unit tests with Spock

value
es
t.

implem
of t

t

is now 7 kilograms, even though all products weigh 9 kg. To debug this unit test, you’d
have to run it in a debugger and find the source of the mistake in the Basket class.

 To help Spock do its magic, you can override the toString() method in your
objects, because this is what Spock runs on failed tests. The following listing exposes
the internal implementation of the basket in the toString() method.

public class ProblematicBasket {

 protected Map<Product,Integer> contents = new HashMap<>();

 [... rest of code is redacted for brevity purposes...]

 @Override
 public String toString()
 {
 StringBuilder builder = new StringBuilder("[");
 for (Entry<Product, Integer> entry:contents.entrySet())
 {
 builder.append(entry.getValue());
 builder.append(" x ");
 builder.append(entry.getKey().getName());
 builder.append(", ");
 }
 builder.setLength(builder.length()-2);

 return builder.append("]").toString();
 }

}

Now when the test fails, you get the output shown in figure 4.15.

Listing 4.27 Helping failure rendering in the toString() method

Key is product;
is how many tim
it’s in the baske

Custom
entation
oString()

Prints number of
imes each product

is in the basket Prints product
name

Camera was not added twice.

Figure 4.15 Spock failed test with custom toString() method
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

119Writing readable Spock tests

Ch
H
m

 Seeing this result makes it much easier to understand what’s gone wrong. Just by
looking at the test result, you can see that even though you added two cameras in the
basket, it kept only one. The bug you inserted is exactly at this place (it always adds
one product in the basket, regardless of what the user said).

 This kind of detail is a lifesaver when multiple tests break and it’s hard to under-
stand whether the test needs fixing or the production code you changed is against
specifications. In a large enterprise application, a single code change can easily break
hundreds of existing unit tests. It’s critical to understand which tests broke because
your change is wrong, and which tests broke because they’re based on old business
needs that are made obsolete by your change. In the former case, you must revise your
code change (so that tests pass), whereas in the latter case, you need to update the
failing unit tests themselves so that they express the new requirement.

 The beauty of this Spock feature is that toString() is usually already implemented
in domain objects for easy logging and reporting. You may be lucky enough to get this
functionality for free without any changes in your Java code.

 After you finish writing a Spock test, check whether you need to implement cus-
tom toString() methods for the classes that are used in the final assertions.

4.4.4 Using Hamcrest matchers

Hamcrest matchers8 are a third-party library commonly used in JUnit assert state-
ments. They offer a pseudo-language that allows for expressiveness in what’s being
evaluated. You might have seen them already in JUnit tests.

 Spock supports Hamcrest matchers natively, as shown in the following listing.

def "trivial test with Hamcrest"() {
 given: "a list of products"
 List<String> products= ["camera", "laptop","hifi"]

 expect: "camera should be one of them"
 products hasItem("camera")

 and: "hotdog is not one of them"
 products not(hasItem("hotdog"))
}

The hasItem() matcher accepts a list and returns true if any element matches the
argument. Normally, that check would require a loop in Java, so this matcher is more
brief and concise.

 One of the important features of Hamcrest matchers is that they can be chained
together to create more-complicated expressions. Listing 4.27 also uses the not()

8 Hamcrest is an anagram of the word matchers.

Listing 4.28 Spock support for Hamcrest matchers

Creation of a list

Checks that any item
of the list is “camera”ains two

amcrest
atchers
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

120 CHAPTER 4 Writing unit tests with Spock
matcher, which takes an existing matcher and reverses its meaning. Figure 4.16
illustrates this test. You can find more information about other Hamcrest matchers
(and how to create your own) on the official web page at http://hamcrest.org/.

 Spock also supports an alternative syntax for Hamcrest matchers that makes the
flow of reading a specification more natural, as shown in the next listing.

def "trivial test with Hamcrest (alt)"() {
 given: "an empty list"
 List<String> products= new ArrayList<String>()

 when: "it is filled with products"
 products.add("laptop")
 products.add("camera")
 products.add("hifi")

 then: "camera should be one of them"
 expect(products, hasItem("camera"))

 and: "hotdog is not one of them"
 that(products, not(hasItem("hotdog")))
}

The test is exactly the same as listing 4.28, but reads better because the matcher lines
are coupled with the Spock blocks. The assertions are close to human text: “expect
products has item (named) camera, and that products (does) not have item (named)
hotdog” (see figure 4.17).

Listing 4.29 Alternative Spock support for Hamcrest matchers

given:

A list of products

Hamcrest matchers
are supported natively.

You can use and: to
chain Hamcrest matchers.

expect:

Has camera? Check! Hold the hot dog please.

and:

Figure 4.16 Hamcrest matchers can be used natively within Spock tests.

expect() is useful
for then: blocks.

that() is useful for and:
and expect: Spock blocks.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

http://hamcrest.org/

121Writing readable Spock tests

Iterat
list and

all n
p

Figure 4.17 Hamcrest matchers have an alternate near-English syntax that makes them easier to read.

The expect() and that() methods are Spock syntactic sugar and have no effect on
how the test runs.

Hamcrest matchers have their uses, and they can be powerful if you create your own
for your domain classes. But often they can be replaced with Groovy code, and more
specifically with Groovy closures. The following listing shows the same trivial example
without Hamcrest matchers.

def "trivial test with Groovy closure"() {
 given: "a list of products"
 List<String> products= ["camera", "laptop", "hifi"]

 expect: "camera should be one of them"
 products.any{ productName -> productName == "camera"}

 and: "hotdog is not one of them"
 products.every{ productName -> productName != "hotdog"}
}

I consider Groovy closures more powerful because they can be created on the spot for
each unit test to match exactly what’s being tested. But if you have existing Hamcrest

Compatibility with JUnit

As you’ve seen, Spock allows you to reuse several existing JUnit facilities. I’ve already
mentioned that JUnit lifecycle annotations (@Before, @After, and so on) are recog-
nized by Spock. Now you’ve seen that integration with Hamcrest matchers is also sup-
ported. Spock even supports JUnit rules out of the box. The transition to Spock is
easy because it doesn’t force you to discard your existing knowledge. If your team
has invested heavily in custom matchers or rules, you can use them in your Spock
tests, too.

Listing 4.30 Using Groovy closures in Spock assertions

given: when:

List is filled with productsAn empty
list

Hamcrest matcher
syntax reads naturally.

then:

expect (the list has a camera) and: that (doesn’t have a hot dog)

•
•
•

and:

Iterates over list
and passes if any
is named cameraes over

 checks
ames of
roducts
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

122 CHAPTER 4 Writing unit tests with Spock

t
matchers from your JUnit tests, using them in Spock tests is easy, as shown in listings
4.28 and 4.29.

 As a general rule, if a Hamcrest matcher already covers what you want, use it
(hasItem() in the preceding example). If using Hamcrest matchers makes your
example complex to read, use closures.

4.4.5 Grouping test code further

I mentioned at the beginning of the chapter that one of the first problems you
encounter in large enterprise projects is the length of unit tests. With Spock blocks,
you already have a basic structure in place because the setup-trigger-evaluate cycles
are clearly marked. Even then, you’ll find several times that your then: and given:
blocks contain too many things, making the test difficult to read.

 To better illustrate this problem, you’ll add to the running example a class that
represents the warehouse of the e-shop, as shown in the following listing.

public class WarehouseInventory {

 public void preload(Product product, int times){
 [...code redacted for brevity...]
 }

 public void subtract(String productName, Integer times){

 [...code redacted for brevity...]
 }

 public int availableOfProduct(String productName){
 [...code redacted for brevity...]
 }

 public boolean isEmpty(){
 [...code redacted for brevity...]
 }

 public int getBoxesMovedToday(){
 [...code redacted for brevity...]
 }
}

You’ll also augment the electronic basket with more (imaginary) methods that define
its behavior, as shown in the following listing.

public class EnterprisyBasket extends Basket{

 public void enableAutoRefresh(){
 [...code redacted for brevity...]
 }

Listing 4.31 An imaginary warehouse

Listing 4.32 An enterprisy basket

Loads the
warehouse

Called by the baske
during checkout

Provides
inventory status

Returns true if
no product exists

Keeps track
of sales

Classic enterprise code
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

c

123Writing readable Spock tests

 public void setNumberOfCaches(int number){
 [...code redacted for brevity...]
 }

 public void setCustomerResolver(DefaultCustomerResolver
 defaultCustomerResolver){
 [...code redacted for brevity...]
 }

 public void setWarehouseInventory(WarehouseInventory
 warehouseInventory){
 [...code redacted for brevity...]
 }

 public void setLanguage(String language){
 [...code redacted for brevity...]
 }

 public void checkout(){
 [...code redacted for brevity...]
 }

}

Now assume that you want to write a unit test for the warehouse to verify that it works
correctly when a customer checks out. The Spock test is shown in the next listing.

def "Buying products reduces the inventory availability"() {
 given: "an inventory with products"
 Product laptop = new Product(name:"toshiba",price:1200,weight:5)
 Product camera = new Product(name:"panasonic",price:350,weight:2)
 Product hifi = new Product(name:"jvc",price:600,weight:5)
 WarehouseInventory warehouseInventory = new WarehouseInventory()
 warehouseInventory.preload(laptop,3)
 warehouseInventory.preload(camera,5)
 warehouseInventory.preload(hifi,2)

 and: "an empty basket"
 EnterprisyBasket basket = new EnterprisyBasket()
 basket.setWarehouseInventory(warehouseInventory)
 basket.setCustomerResolver(new DefaultCustomerResolver())
 basket.setLanguage("english")
 basket.setNumberOfCaches(3)
 basket.enableAutoRefresh()

 when: "user gets a laptop and two cameras"
 basket.addProduct(camera,2)
 basket.addProduct(laptop)

 and: "user completes the transaction"
 basket.checkout()

Listing 4.33 Assertions and setup on the same object

Classic
enterprise
code

Setter
injection
methods

Removes products
from inventory

Object
reation

Object
parameters
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

Grou
set

obj
124 CHAPTER 4 Writing unit tests with Spock

 then: "warehouse is updated accordingly"
 !warehouseInventory.isEmpty()
 warehouseInventory.getBoxesMovedToday() == 3
 warehouseInventory.availableOfProduct("toshiba") == 2
 warehouseInventory.availableOfProduct("panasonic") == 3
 warehouseInventory.availableOfProduct("jvc") == 2
}

You’ve already split the given: and when: blocks with and: blocks in order to make
the test more readable. But it can be improved even more in two areas:

■ The final assertions test multiple things, but all on the same object.
■ The given: block of the test has too many statements, which can be roughly

split into two kinds: statements that create objects, and statements that set prop-
erties on existing objects.

In most cases (involving large Spock tests), extra properties are secondary to the object
creation. You can make several changes to the test, as shown in the following listing.

def "Buying products reduces the inventory availability (alt)"() {
 given: "an inventory with products"
 Product laptop = new Product(name:"toshiba",price:1200,weight:5)
 Product camera = new Product(name:"panasonic",price:350,weight:2)
 Product hifi = new Product(name:"jvc",price:600,weight:5)
 WarehouseInventory warehouseInventory = new WarehouseInventory()
 warehouseInventory.with{
 preload laptop,3
 preload camera,5
 preload hifi,2
 }

 and: "an empty basket"
 EnterprisyBasket basket = new EnterprisyBasket()
 basket.with {
 setWarehouseInventory(warehouseInventory)
 setCustomerResolver(new DefaultCustomerResolver())
 setLanguage "english"
 setNumberOfCaches 3
 enableAutoRefresh()
 }

 when: "user gets a laptop and two cameras"
 basket.with {
 addProduct camera,2
 addProduct laptop
 }

 and: "user completes the transaction"
 basket.checkout()

Listing 4.34 Grouping similar code with Groovy and Spock

Assertions on
the same object

p object
up with
Groovy

ect.with

Remove
parentheses
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

125Summary
 then: "warehouse is updated accordingly"
 with(warehouseInventory) {
 {
 !isEmpty()
 getBoxesMovedToday() == 3
 availableOfProduct("toshiba") == 2
 availableOfProduct("panasonic") == 3
 availableOfProduct("jvc") == 2
 }
}

First, you can group all assertions by using the Spock with() construct. This feature is
specific to Spock and allows you to show that multiple assertions affect a single object.
It’s much clearer now that you deal specifically with the warehouse inventory at the
end of this test.

 The Spock with() construct is inspired from the Groovy with() construct that
works on any Groovy code (even outside Spock tests). I’ve used this feature in the
given: and when: blocks to group all setup code that affects a single object. Now it’s
clearer which code is creating new objects and which code is setting parameters on
existing objects (indentation also helps).

 Notice that the two with() constructs may share the same name but are unre-
lated. One is a Groovy feature, and the other is a Spock feature that works only in
Spock asserts.

 As an added bonus, I’ve also used the Groovy convention demonstrated in chapter
2, where you can remove parentheses in method calls with at least one argument. This
makes the test a little more like DSL. It’s not much, but it certainly helps with readabil-
ity. I’ll show more ways to deal with large Spock tests in chapter 8.

4.5 Summary
■ Spock contains several blocks/labels to mark the phases inside a unit test. They

help readability of the test and in some cases enforce the code structure.
(Spock will reject assignments when an assertion was expected.)

■ The given: block creates the scene for the test, the when: block triggers the
tested action, and the then: block examines the result. The given-then-when
structure is the suggested structure for Spock tests.

■ The and: block can be used on any other block as a semantic extension.
■ The expect: block is a combination of then: and when: and can be used for

trivial tests or as an intermediate precondition in longer tests.
■ The cleanup: block will always run at the end of a Spock test regardless of the

test result. It’s used to release resources.
■ Spock test methods can have full sentences as names. You should always exploit

this feature to better describe what your method does.
■ The @Subject annotation should be used to mark the class under test. You can

use it individually in each test method, or at the class level if all test methods
focus on a single class.

Group assertions with
Spock Specification.with
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

126 CHAPTER 4 Writing unit tests with Spock
■ The @Title annotation should be used to explain with full English text what
your Spock test does.

■ The @Narrative annotation can be used for a longer description of a Spock test.
■ Spock methods setup() and cleanup() run before and after each test method.

They run as many times as test methods exist.
■ Spock methods setupSpec() and cleanupSpec() run once before all test meth-

ods and once after they’re finished.
■ Spock supports and understands JUnit annotations such as @Before, @After,

@BeforeClass, and @AfterClass.
■ The @Shared annotation marks long-lived objects that span all test methods.

The setupSpec() and cleanupSpec() methods work only with objects that are
either static or marked with the @Shared annotation.

■ The old() method can be used in specific cases to capture the relative change
of the class state instead of comparing absolute values before and after the trig-
gered action.

■ A Spock test can have multiple then: blocks, which are executed in the order
they’re mentioned.

■ All Spock blocks should have an English description next to them for readability.
■ Spock calls the Java toString() method automatically on any involved class

when a test fails. Overriding this method allows you to define what will be
shown on failed tests.

■ Spock natively supports Hamcrest matchers with three alternative syntax
variations.

■ Spock natively supports JUnit rules out of the box.
■ The Groovy object.with construct can be used to group object parameteriza-

tion inside Spock tests.
■ The Spock Specification.with construct can be used to group assertions to a

single object.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

Parameterized tests
The previous chapter presented all the Spock blocks that you can use in a unit test,
except for one. I left out the where: block on purpose because it deserves a chapter
of its own. The where: block is used for parameterized tests. Parameterized tests are
unit tests that share the same test logic (for example, when the temperature goes
up, the reactor must shut down), but need to run on different parameters (for
example, with low temperature and then with high temperature) in order to
account for all cases.

 This chapter covers both some theory on when to use parameterized tests and
facilities Spock offers for parameterized testing. You might already have seen
parameterized tests with JUnit, so feel free to skip the first section and start reading
at section 5.2 for the specific Spock features if you’re already familiar with the con-
cept of parameterized testing.

This chapter covers
■ Definition of parameterized tests
■ Using the where: block
■ Understanding data tables and data pipes
■ Writing custom data providers
127

Licensed to Stephanie Bernal <nordicka.n@gmail.com>

128 CHAPTER 5 Parameterized tests
 Spock is flexible when it comes to parameterized tests. If offers a complete portfo-
lio of techniques adaptable to your situation, no matter the complexity of your test
data. The most basic format of parameterized tests (data tables) was already demon-
strated in chapter 3. This chapter also explains data pipes (the underlying mechanism
of data tables) and shows how to write custom data providers with Spock, which is the
most flexible solution (but needs more programming effort).

 All these Spock techniques have their own advantages and disadvantages with
regards to readability and flexibility of unit tests, so it’s important to understand the
trade-offs between them. Understanding when to use each one is one of the running
themes of this chapter.

5.1 Detecting the need for parameterized tests
Experienced developers usually can understand the need for a parameterized test
right away. But even if you’re just starting with unit tests, an easy rule of thumb can
show you the need for a parameterized test. Every time you start a new unit test by
copying-pasting an existing one, ask yourself, “Is this test that much different from the
previous one?” If you find yourself duplicating unit tests and then changing only one
or two variables to create a similar scenario, take a step back and think about whether
a parameterized test would be more useful. Parameterized tests will help you keep the
test code DRY.1

Assume, for example, that you have a single class that takes an image filename and
returns true if the picture has an extension that’s considered valid for the application:

public class ImageNameValidator {
 public boolean isValidImageExtension(String fileName)
 {
 [...redacted for brevity...]
 }

}

Duplicating unit test code isn’t a healthy habit

Anytime you copy-paste a unit test, you’re creating code duplication, because you
haven’t thought about reusable code segments. Like production code, test code
should be treated with the same “respect.” Refactoring unit tests to allow them to
share code via composition instead of performing a blind copy-paste should be one
of your first priorities when adding new unit tests into an existing suite. More details
are presented in chapter 8.

1 This acronym stands for don’t repeat yourself. See https://en.wikipedia.org/wiki/Don’t_repeat_yourself for
more information.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

https://en.wikipedia.org/wiki/Don’t_repeat_yourself

129Detecting the need for parameterized tests

E
d

outp
A first naive approach would be to write a single Spock test for every image extension
that needs to be examined. This approach is shown in the following listing (and it
clearly suffers from code duplication).

def "Valid images are JPG"() {
 given: "an image extension checker and a jpg file"
 ImageNameValidator validator = new ImageNameValidator()
 String pictureFile = "scenery.jpg"

 expect: "that the filename is valid"
 validator.isValidImageExtension(pictureFile)
}

def "Valid images are JPEG"() {
 given: "an image extension checker and a jpeg file"
 ImageNameValidator validator = new ImageNameValidator()
 String pictureFile = "house.jpeg"

 expect: "that the filename is valid"
 validator.isValidImageExtension(pictureFile)
}

def "Tiff are invalid"() {
 given: "an image extension checker and a tiff file"
 ImageNameValidator validator = new ImageNameValidator()
 String pictureFile = "sky.tiff"

 expect: "that the filename is invalid"
 !validator.isValidImageExtension(pictureFile)
}

The original requirement is to accept JPG files only, and a single unit test is written.
The customer reports that the application doesn’t work on Linux because .jpeg files
are used. Application code is updated, and another test method is added (by copying
the existing one).

 Then a business analyst requests an explicit test for not supporting TIFF files. You can
see where this is going. In large enterprise applications, multiple developers might
work on the same feature as time progresses. If each developer is blindly adding a new
unit test by copy-paste (either because of a lack of time or lack of experience), the result
is a Spock test, as shown in listing 5.1, that smells of code duplication from afar.

 Notice that each test method by itself in listing 5.1 is well structured. Each is docu-
mented, it tests one thing, the trigger action is small, and so on. The problem stems
from the collection of those test methods that need further refactoring, as they all
have the exact same business logic.

Listing 5.1 Duplicate tests—don’t do this

Each test
differs in
input data.

ach test
iffers in
ut data.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

130 CHAPTER 5 Parameterized tests

Com
lo

scen
use p

and va

F
block

the
pa
5.1.1 What are parameterized tests?

An example of a parameterized test for this class in Spock is shown in the following
listing. With a single unit test, this listing not only replaces all three tests of listing 5.1
but also adds two more cases.

def "Valid images are PNG and JPEG files"() {
 given: "an image extension checker"
 ImageNameValidator validator = new ImageNameValidator()

 expect: "that only valid filenames are accepted"
 validator.isValidImageExtension(pictureFile) == validPicture

 where: "sample image names are"
 pictureFile || validPicture
 "scenery.jpg" || true
 "house.jpeg" || true
 "car.png" || true
 "sky.tiff" || false
 "dance_bunny.gif" || false
}

The test method examines multiple scenarios in which the test logic is always the same
(validate a filename) and only the input (jpg) and output (valid/not valid) variables
change each time. The test code is fixed, whereas the test input and output data come
in the form of parameters (and thus you have a parameterized test).

 The idea is better illustrated in figure 5.1.

Listing 5.2 Simple Spock parameterized test

Class under test

mon test
gic for all
arios that
ictureFile
lidPicture

where: block contains
parameters for
multiple scenarios.

irst line of
 is always
 names of
rameters

Input and expected
output for each
scenario in each line

Input Output

Different sets
of input/output…

…use the same test logic:
Is the image extension valid?

.jpg

.jpeg

.png

.tiff

Figure 5.1 Parameterized
tests share the same test
logic for different input/
output datasets.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

https://github.com/Codearte/jfairy
https://github.com/Codearte/jfairy

131Using the where: block
The test code is shared among all parameters. Instead of duplicating this common
code for each scenario, you centralize it on a single test method. Then each scenario
comes with its own scenario parameters that define the expected result for each input.
Output 1 is expected when the test scenario is triggered with input 1, output 2 is
expected if input 2 is used, and so on.

5.2 Using the where: block
The where: block, introduced in chapter 3, is responsible for holding all input and
output parameters for a parameterized test. It can be combined with all other blocks
shown in chapter 4, but it has to be the last block inside a Spock test, as illustrated in
figure 5.2. Only an and: block might follow a where: block (and that would be rare).

Error 999

Error 002

Valid

Error
info

given:

.jpg

Input is
pictureFile

Output is a result
object for each input

.jpg

.jpeg

.png

.gif

.tiff

Error 999

Error 002

.jpg

.jpeg

.png

.gif

.tiff

when:

.jpg

then: where:

.jpg

Figure 5.2 A where: clause must be the last block in a Spock test. It contains the differing values for
parameterized tests.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

132 CHAPTER 5 Parameterized tests

wh
is
in

Input a
scenari

conse
The simpler given-expect-when structure was shown in listing 5.2. This works for trivial
and relatively simple tests. The more usual way (and the recommended way for larger
parameterized tests) is the given-when-then-where structure shown in the following
listing.

def "Valid images are PNG and JPEG files (enterprise version)"() {
 given: "an image extension checker"
 ImageNameValidator validator = new ImageNameValidator()

 when: "an image is checked"
 ImageExtensionCheck imageExtensionCheck =
 validator.examineImageExtension(pictureFile)

 then: "expect that only valid filenames are accepted"
 imageExtensionCheck.result == validPicture
 imageExtensionCheck.errorCode == error
 imageExtensionCheck.errorDescription == description

 where: "sample image names are"
 pictureFile || validPicture | error | description
 "scenery.jpg" || true | "" | ""
 "house.jpeg" || true | "" | ""
 "car.png" || true | "" | ""
 "sky.tiff" || false | "ERROR002" | "Tiff files are not
 supported"
 "dance_bunny.gif" || false | "ERROR999" | "Unsupported file
 type"
}

Here I’ve modified the ImageNameValidator class to return a simple Java object
named ImageExtensionCheck that groups the result of the check along with an error
code and a human-readable description. The when: block creates this result object,
and the then: block compares its contents against the parameterized variables in the
where: block.

 Notice that the where: block is the last one in the Spock test. If you have other
blocks after the where: block, Spock will refuse to run the test.

 Now that you know the basic use of the where: block, it’s time to focus on its con-
tents. So far, all the examples you’ve seen have used data tables. This is one of the pos-
sible variations. Spock supports the following:

■ Data tables—This is the declarative style. Easy to write but doesn’t cope with
complex tests. Readable by business analysts.

■ Data tables with programmatic expressions as values—A bit more flexible than data
tables but with some loss in readability.

■ Data pipes with fully dynamic input and outputs—Flexible but not as readable as
data tables.

Listing 5.3 The given-when-then-where structure

Input parameter
(pictureFile) is used
in the when: block.

Output parameters are
checked in the then: block.ere: block

last block
 the test.

nd output
os in each
quent line
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

133Using the where: block

.

■ Custom data iterators—Your nuclear option when all else fails. They can be used
for any extreme corner case of data generation. Unreadable by nontechnical
people.

You’ll examine the details of all these techniques in turn in the rest of the chapter.

5.2.1 Using data tables in the where: block

We’ve now established
that the where: block
must be the last block in a
Spock test. In all examples
you’ve seen so far, the
where: block contains a
data table, as illustrated in
figure 5.3.

 This data table holds
multiple test cases in
which each line is a scenario and each column is an input or output variable for that
scenario. The next listing shows this format.

def "Trivial adder test"() {
 given: "an adder"
 Adder adder = new Adder()

 expect: "that it calculates the sum of two numbers"
 adder.add(first,second)==sum

 where: "some scenarios are"
 first |second || sum
 1 | 1 || 2
 3 | 2 || 5
 82 | 16 || 98
 3 | -3 || 0
 0 | 0 || 0
}

The data table contains a header that names each parameter. You have to make sure
that the names you give to parameters don’t clash with existing variables in the source
code (either in local scope or global scope).

 You’ll notice that the data table is split with either single (|) or dual (||) pipe sym-
bols. The single pipe denotes a column, and the double pipe shows where the input
parameters stop and the output parameters start. Usually, only one column in a data
table uses dual pipes.

 In the simple example of listing 5.4, the output parameter is obvious. In more com-
plex examples, such as listing 5.3 or the examples with the nuclear reactor in chapter

Listing 5.4 Using data tables in Spock

given: expect: where:

First
1
3
82
3
0

Second Sum
1
2
16
–3
0

2
5
98
0
0

2
3+ == 5+

–
=

Figure 5.3 The where: block often contains a data table with
defined input columns and a desired result column.

Relationship between
output and input
parameters: sum is based
on first and second.

Names of parameters—
first and second are
input and sum is output

Scenarios that will be
tested contain values
for first and second
and expected sum.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

134 CHAPTER 5 Parameterized tests

p

3, the dual pipe is much more helpful. Keep in mind that the dual pipe symbol is used
strictly for readability and doesn’t affect the way Spock uses the data table. You can omit
it if you think that it’s not needed (my recommendation is to always include it).

 If you’re a seasoned Java developer, you should have noticed something strange in
listing 5.4.2 The types of the parameters are never declared. The data table contains
the name and values of parameters but not their type!

 Remember that Groovy (as explained in chapter 2) is an optionally typed lan-
guage. In the case of data tables, Spock can understand the type of input and output
parameters by the context of the unit test.

 But it’s possible to explicitly define the types of the parameters by using them as
arguments in the test method, as shown in the next listing.

def "Trivial adder test (alt)"(int first, int second, int sum) {
 given: "an adder"
 Adder adder = new Adder()

 expect: "that it calculates the sum of two numbers"
 adder.add(first,second)==sum

 where: "some scenarios are"
 first |second || sum
 1 | 1 || 2
 3 | 2 || 5
 82 | 16 || 98
 3 | -3 || 0
 0 | 0 || 0
}

Here I’ve included all parameters as arguments in the test method. This makes their
type clear and can also help your IDE (Eclipse) to understand the nature of the test
parameters.

 You should decide on your own whether you need to declare the types of the
parameters. For brevity, I don’t declare them in any of the chapter examples. Just
make sure that all developers on your team agree on the same decision.

5.2.2 Understanding limitations of data tables

I’ve already stressed that the where: block must be the last block in a Spock test (and
only an and: block can follow it as a rare exception). I’ve also shown how to declare
the types of parameters (in listing 5.5) when they’re not clear either to your IDE or
even to Spock in some extreme cases.

 Another corner case with Spock data tables is that they must have at least two col-
umns. If you’re writing a test that has only one parameter, you must use a “filler” for a
second column, as shown in the next listing.

2 And also in listings 5.3 and 5.2, if you’ve been paying attention.

Listing 5.5 Using data tables in Spock with typed parameters

Declaring the types
of parameters (all

integers in this case)
Using the

arameters
as before

Declaring the values
of parameters (all
integers in this case)
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

135Using the where: block

def "Tiff, gif, raw,mov and bmp are invalid extensions"() {
 given: "an image extension checker"
 ImageNameValidator validator = new ImageNameValidator()

 expect: "that only valid filenames are accepted"
 !validator.isValidImageExtension(pictureFile)

 where: "sample image names are"
 pictureFile ||
 "screenshot.bmp" || _
 "IMG3434.raw" ||
 "christmas.mov" ||
 "sky.tiff" ||
 "dance_bunny.gif" ||
}

Perhaps some of these limitations will be lifted in future versions of Spock, but for the
time being, you have to live with them. The advantages of Spock data tables still out-
perform these minor inconveniences.

5.2.3 Performing easy maintenance of data tables

The ultimate goal of a parameterized test is easy maintenance. Maintenance is
affected by several factors, such as the size of the test, its readability, and of course, its
comments. Unfortunately, test code doesn’t always get the same attention as produc-
tion code, resulting in tests that are hard to read and understand.

 The big advantage of Spock and the way it exploits data tables in parameterized
tests is that it forces you to gather all input and output variables in a single place. Not
only that, but unlike other solutions for parameterized tests (examples were shown
with JUnit in chapter 3), data tables include both the names and the values of test
parameters.

 Adding a new scenario is literally a single line change. Adding a new output or
input parameter is as easy as adding a new column. Figure 5.4 provides a visual over-
view of how this might work for listing 5.3.

Listing 5.6 Data tables with one column

Output parameter is
always false for this test.
All images are invalid.

Underscore acts
as dummy filler
for the Boolean
result of the test.

validPicture error description

scenary.jpg is valid

house.jpeg is valid

car.png is valid

sky.tiff is invalid

dance_bunny.gif is invalid

+
New

variable

+ New scenario

pictureFile

Figure 5.4 Adding a new test scenario
means adding a new line in the where:
block. Adding a new parameter means
adding a new column in the where: block.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

136 CHAPTER 5 Parameterized tests
The ease of maintenance of Spock data tables is so addicting that once you integrate
data tables in your complex tests, you’ll understand that the only reason parameter-
ized tests are considered difficult and boring is because of inefficient test tools.

 The beauty of this format is that data tables can be used for any parameterized test,
no matter the complexity involved. If you can isolate the input and output variables, the
Spock test is a simple process of writing down the requirements in the source code. In
some enterprise projects I’ve worked on, extracting the input/output parameters from
the specifications was a more time-consuming job than writing the unit test itself.

 The extensibility of a Spock data table is best illustrated with a semi-real example,
as shown in the next listing.

def "Discount estimation for the eshop"() {
 [...rest of code redacted for brevity..]

 where: "some of the possible scenarios are"
price | isVip | points | order | discount | special || finalDiscount
50 | false | 0 | 50 | 0 | false || 0
100 | false | 0 | 300 | 0 | false || 10
500 | false | 0 | 0 | 0 | true || 50
50 | true | 0 | 50 | 0 | false || 15
50 | true | 0 | 50 | 25 | false || 25
50 | true | 0 | 50 | 5 | false || 15
50 | true | 0 | 50 | 5 | true || 50
50 | false | 0 | 100 | 0 | false || 0
50 | false | 0 | 75 | 10 | false || 10
50 | false | 5000 | 50 | 0 | false || 75
50 | false | 3000 | 50 | 0 | false || 0
50 | true | 8000 | 50 | 3 | false || 75
}

The unit test code isn’t important. The data table contains the business requirements
from the e-shop example that was mentioned in chapter 1. A user selects multiple
products by adding them to an electronic basket. The basket then calculates the final
discount of each product, which depends on the following:

■ The price of the product
■ The discount of the product
■ Whether the customer has bonus/loyalty points
■ The status of the customer (for example, silver, gold, platinum)
■ The price of the total order (the rest of the products)
■ Any special deals that are active

The production code of the e-shop may comprise multiple Java classes with deep hier-
archies and complex setups. With Spock, you can directly map the business needs in a
single data table.

 Now imagine that you’ve finished writing this Spock test, and it passes correctly.
You can show that data table to your business analyst and ask whether all cases are

Listing 5.7 Capturing business needs in data tables

Six parameters
affect final discount

Business scenarios,
one for each line,
which are readable
by business analysis
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

137Using the where: block
covered. If another scenario is needed, you can add it on the spot, run the test again,
and verify the correctness of the system.

 In another situation, your business analyst might not be sure about the current
implementation status of the system3 and might ask what happens in a specific sce-
nario that’s not yet covered by the unit test. To answer the question, you don’t even
need to look at the production code. Again, you add a new line/scenario in the Spock
data table, run the unit test on the spot, and if it passes, you can answer that the
requested feature is already implemented.

 In less common situations, a new business requirement (or refactoring process)
might add another input variable into the system. For example, in the preceding e-shop
scenario, the business decides that coupon codes will be given away that further affect
the discount of a product. Rather than hunting down multiple unit test methods (as in
the naive approach of listing 5.2), you can add a new column in the data table and have
all test cases covered in one step.

 Even though Spock offers several forms of the where: block that will be shown in
the rest of the chapter, I like the data table format for its readability and extensibility.

5.2.4 Exploring the lifecycle of the where: block

It’s important to understand that the where: block in a parameterized test “spawns”
multiple test runs (as many of its lines). A single test method that contains a where:
block with three scenarios will be run by Spock as three individual methods, as shown
in Figure 5.5. All scenarios of the where: block are tested individually, so any change
in state (either in the class under test or its collaborators) will reset in the next run.

3 A common case in legacy projects.

when: then: where:

First
1

3

3

Second Sum
1

2

–3

2

5

0

2
3

+ == 5

given:

+
–
=

1

3

3

setup() cleanup()1

2

–3

2

5

0

2 + 3

1
1 == 2

setup() cleanup()

setup() cleanup()

+
–
=

1 + 1 +

3
2 ==5+

–
=

3 + 2 +

3
3 == 0+

–
=

3 + 3 +

One where: block spawns three test runs.

Figure 5.5 Spock will treat and run each scenario in the where: block of a parameterized
test as if it were a separate test method.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

138 CHAPTER 5 Parameterized tests

Th
an

blo
e

once
s

To illustrate this individuality of data tables, look at the following listing.

class LifecycleDataSpec extends spock.lang.Specification{

 def setup() {
 println "Setup prepares next run"
 }

 def "Trivial adder test"() {
 given: "an adder"
 Adder adder = new Adder()
 println "Given: block runs"

 when: "the add method is called for two numbers"
 int result = adder.add(first,second)
 println "When: block runs for first = $first and second =
 $second"

 then: "the result should be the sum of them"
 result == sum
 println "Then: block is evaluated for sum = $sum"

 where: "some scenarios are"
 first |second || sum
 1 | 1 || 2
 3 | 2 || 5
 3 | -3 || 0
 }

 def cleanup()
 {
 println "Cleanup releases resources of last run\n"
 }

}

Because this unit test has three scenarios in the where: block, the given-when-then
blocks will be executed three times as well. Also, all lifecycle methods explained in
chapter 4 are fully honored by parameterized tests. Both setup() and cleanup() will
be run as many times as the scenarios of the where: block.

 If you run the unit test shown in listing 5.8, you’ll get the following output:

Setup prepares next run
Given: block runs
When: block runs for first = 1 and second = 1
Then: block is evaluated for sum = 2
Cleanup releases resources of last run

Setup prepares next run
Given: block runs
When: block runs for first = 3 and second = 2

Listing 5.8 Lifecycle of parameterized tests

e when:
d then:
cks are
xecuted
for each
cenario.

Single test method
runs multiple times.

Data table with three
scenarios, centralized input
and output parameters
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

139Using the where: block
Then: block is evaluated for sum = 5
Cleanup releases resources of last run

Setup prepares next run
Given: block runs
When: block runs for first = 3 and second = -3
Then: block is evaluated for sum = 0
Cleanup releases resources of last run

It should be clear that each scenario of the where: block acts as if it were a test
method on its own. This enforces the isolation of all test scenarios, which is what
you’d expect in a well-written unit test.

5.2.5 Using the @Unroll annotation for reporting individual test runs

In the previous section, you saw the behavior of Spock in parameterized tests when
the when: block contains multiple scenarios. Spock correctly treats each scenario as an
independent run.

 Unfortunately, for compatibility reasons,4 Spock still presents to the testing envi-
ronment the collection of parameterized scenarios as a single test. For example, in
Eclipse the parameterized test of listing 5.8 produces the output shown in figure 5.6.

This behavior might not be a big issue when all your tests succeed. You still gain the
advantage of using a full sentence as the name of the test in the same way as with non-
parameterized Spock tests.

 Now assume that out of the three scenarios in listing 5.8, the second scenario is a
failure (whereas the other two scenarios pass correctly). For illustration purposes, I
modify the data table as follows:

where: "some scenarios are"
first |second || sum
1 | 1 || 2
3 | 2 || 7
3 | -3 || 0

4 With older IDEs and tools that aren’t smart when it comes to JUnit runners.

Figure 5.6 By default, parameterized tests with multiple scenarios are shown as one test in Eclipse.
The trivial adder test is shown only once, even though the source code defines three scenarios.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

140 CHAPTER 5 Parameterized tests
The second scenario is obviously wrong, because 3 plus 2 isn’t equal to 7. The other
two scenarios are still correct. Running the modified unit test in Eclipse shows the out-
put in figure 5.7.

 Eclipse still shows the parameterized test in a single run. You can see that the test
has failed, but you don’t know which of the scenarios is the problematic one. You have
to look at the failure trace to understand what’s gone wrong.

 This isn’t helpful when your unit test contains a lot of scenarios, as in the example
in listing 5.8. Being able to detect the failed scenario(s) as fast as possible is crucial.

 To accommodate this issue, Spock offers the @Unroll annotation, which makes
multiple parameterized scenarios appear as multiple test runs. The annotation can be
added on the Groovy class (Spock specification) or on the test method itself, as shown
in the next listing. In the former case, its effect will be applied to all test methods.

@Unroll
def "Trivial adder test"() {
 given: "an adder"
 Adder adder = new Adder()

 when: "the add method is called for two numbers"
 int result = adder.add(first,second)

 then: "the result should be the sum of them"
 result ==sum

 where: "some scenarios are"
 first |second || sum
 1 | 1 || 2
 3 | 2 || 5
 3 | -3 || 0
}

Listing 5.9 Unrolling parameterized scenarios

Figure 5.7 When one scenario out of many fails, it’s not clear which is the failed one. You
have to look at the failure trace, note the parameters, and go back to the source code to
find the problematic line in the where: block.

Marking the test method so
that multiple scenarios
appear as multiple runs

Scenarios that will appear as separate
unit tests, one for each line
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

141Using the where: block
With the @Unroll annotation active, running this unit test in Eclipse “unrolls” the test
scenarios and presents them to the test runner as individual tests, as shown in figure 5.8.

 The @Unroll annotation is even more useful when a test has failed, because you
can see exactly which run was the problem. In large enterprise projects with parame-
terized tests that might contain a lot of scenarios, the @Unroll annotation becomes an
essential tool if you want to quickly locate which scenarios have failed. Figure 5.9
shows the same failure as before, but this time you can clearly see which scenario has
failed.

Remember that you still get the individual failure state for each scenario if you click it.
Also note that the @Unroll annotation can be placed on the class level (the whole
Spock specification) and will apply to all test methods inside the class.

5.2.6 Documenting parameterized tests

As you’ve seen in the previous section, the @Unroll annotation is handy when it comes
to parameterized tests because it forces all test scenarios in a single test method to be

Figure 5.8 By marking a parameterized test with @Unroll, Eclipse now shows each
run as an individual test.

Figure 5.9 Locating failed scenarios with @Unroll is far easier than without it. The
failed scenario is shown instantly as a failed test.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

142 CHAPTER 5 Parameterized tests
reported as individual test runs. If you think that this feature isn’t groundbreaking
and should be the default, I agree with you.5

 But Spock has another trick. With a little more effort, you can format the name
shown for each scenario. The most logical things to include are the test parameters, as
shown in the following listing.

@Unroll("Adder test #first, #second and #sum (alt2)")
def "Trivial adder test (alt2)"() {
 given: "an adder"
 Adder adder = new Adder()

 when: "the add method is called for two numbers"
 int result = adder.add(first,second)

 then: "the result should be the sum of them"
 result ==sum

 where: "some scenarios are"
 first |second || sum
 1 | 1 || 2
 3 | 2 || 5
 3 | -3 || 0
}

The @Unroll annotation accepts a string argument, in which you can put any English
sentence. Variables marked with # will be replaced6 with their current values when
each scenario runs. The final result of this evaluation will override the name of the
unit test, as shown in figure 5.10.

5 After all, JUnit does this as well.

Listing 5.10 Printing parameters of each scenario

6 The reasons that the # symbol is used instead of $ are purely technical and aren’t relevant unless you’re inter-
ested in Groovy and Spock internals.

Using parameter names
with @Unroll so they’re
shown in the final run—
alternative syntax

Parameters that will
be interpolated in
the test description

Source code

Figure 5.10 The parameter values for each scenario can be printed as part of the test name.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

143Using the where: block

Enu
can b

a p

An Obje
th

p

I consider this feature one of the big highlights of Spock. I challenge you to find a test
framework that accomplishes this visibility of test parameters with a simple technique.
If you’re feeling lazy, you can even embed the parameters directly in the test method
name,7 as shown in the following listing.

@Unroll
def "Testing the Adder for #first + #second = #sum "{
 given: "an adder"
 Adder adder = new Adder()

[...rest of code is same as listing 5.10...]
}

The result in Eclipse is the same as with listing 5.10, so pick any approach you like
(but as always, if you work in a team, agree beforehand on the best practice).

5.2.7 Using expressions and statements in data tables

All the data tables I’ve shown you so far contain scalar values. Nothing is stopping you
from using custom classes, collections, object factories, or any other Groovy expres-
sion that results in something that can be used as an input or output parameter. Take
a look at the next listing (created strictly for demonstration purposes).

@Unroll
def "Testing the Adder for #first + #second = #sum "() {
 given: "an adder"
 Adder adder = new Adder()

 expect: "that it calculates the sum of two numbers"
 adder.add(first,second)==sum

 where: "some scenarios are"
 first |second || sum
 2+3 | 10-2 || new
 Integer(13).intValue()
 MyInteger.FIVE.getNumber()
 | MyInteger.NINE.getNumber() || 14
 IntegerFactory.createFrom("two") | (7-2)*2 || 12
 [1,2,3].get(1) | 3 ||
 IntegerFactory.createFrom("five")
 new Integer(5).intValue() | new String("cat").size() ||
 MyInteger.EIGHT.getNumber()
 ["hello","world"].size() | 5 ||
 IntegerFactory.createFrom("seven")
}

Listing 5.11 Parameter rendering on the test method

7 Take that, TestNG !

Listing 5.12 Custom expressions in data tables

Parameters inside the
method name instead of
using the unroll string

Full statement is
used directly as
a parameter in

data table.

meration
e used as
arameter.

ctFactory
at creates

dynamic
arameters
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

144 CHAPTER 5 Parameterized tests

inpu
The MyInteger class is a simple enumera-
tion that contains the first 10 integers.
The IntegerFactory class is a trivial fac-
tory that converts strings to integers. The
details of the code aren’t important; what
you need to take away from this example
is the flexibility of data tables. If you run
this example, Spock will evaluate every-
thing and present you with the final result,
as shown in figure 5.11.

 I try to avoid this technique because I think it damages the readability of the test. I
prefer to keep values in data tables simple. Using too many expressions in your data
tables is a sign that you need to convert the tabular data into data pipes, as explained
in the next section.

5.3 Using data pipes for calculating input/output
parameters
Data tables should be your bread and butter when writing Spock parameterized tests.
They shine when all input and output parameters are known in advance and thus can
be embedded directly in the source code.

 But sometimes the test parameters are computed on the spot or come from an
external source (typically a file, as you’ll see later in this chapter). For those cases,
using data pipes is a better option. Data pipes are a lower-level construct of Spock
parameterized tests that can be used when you want to dynamically create/read test
parameters.8

 As a first example, let’s rewrite the first data table code of listing 5.1, using data
pipes this time. The result is shown in the next listing.

def "Valid images are PNG and JPEG files only"() {
 given: "an image extension checker"
 ImageNameValidator validator = new ImageNameValidator()

 expect: "that only valid filenames are accepted"
 validator.isValidImageExtension(pictureFile) == validPicture

 where: "sample image names are"
 pictureFile << ["scenery.jpg","house.jpeg", "car.png ","sky.tiff"
 ,"dance_bunny.gif"]
 validPicture << [true, true, false, false, false]
}

8 Data tables can be seen as an abstraction over data pipes.

Listing 5.13 Trivial example of data pipes

Figure 5.11 Spock will evaluate all
expressions and statements so that they can be
used as standard parameters. All statements
from listing 5.12 finally resolve to integers.

Relationship
of input and

output
parameters

All values of
t parameter
are inside a

collection.

All values of output
parameter are
inside a collection.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

145Using data pipes for calculating input/output parameters

This wi
to 60

n

The code accomplishes the same thing as listing 5.1. But this time the tabular format
is “rotated” 90 degrees. Each line of the where: block contains a parameter, and the
scenarios of the test are the imaginary columns. The key point here is the use of the
left-shift operator symbol (<<). In the context of the where: block, it means, “For the
first scenario, pick the first value in the list for the input and output parameter; for the
second scenario, pick the second value in the list, and so on.”

 In this example, I pass both input and output parameters in a list. But the left-shift
operator can work on several other things, such as iterables, iterations, enumerations,
other collections, and even strings. You’ll examine the most common cases in the next
sections.

5.3.1 Dynamically generated parameters

If you compared listing 5.13 to listing 5.2, you’d be right to say that there’s no real
advantage to using data pipes. That’s because in that particular scenario, all parame-
ters are known in advance and can be embedded directly in their full form. The
power of data pipes becomes evident with computed data.

 In the next listing, let’s consider a different example, in which using a data table
would be impractical because of the sheer size of input and output parameters.

def "Multiplying #first and #second is always a negative number"() {
 given: "a calculator"
 Calculator calc = new Calculator()

 expect: "that multiplying a positive and negative number is also
 negative"
 calc.multiply(first,second) < 0

 where: "some scenarios are"
 first << (20..80)
 second << (-65..-5)
}

The (M..N) notation is a Groovy range. It’s similar to a list that will contain all values,
starting from M and ending in N. Thus the (20..80) notation indicates a range of all
integers from 20 to 80. Groovy
expands the ranges and Spock
picks each value in turn, result-
ing in a parameterized test with
60 scenarios. You can see the
scenarios in detail if you run the
unit test, as shown in figure 5.12.

Figure 5.12 Using ranges to automatically
generate 60 scenarios instead of

creating a data table with 60 lines.

Listing 5.14 Using Groovy ranges as data generators

No output parameterll expand
 positive
umbers. This will expand to

60 negative numbers.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

146 CHAPTER 5 Parameterized tests

 joi
strin
Creating a data table with 120 values would make the unit test unreadable. By using
data pipes and Groovy ranges, you’ve created 60 scenarios on the spot, while the
source code only contains two statements (the ranges).

 For a more realistic example, assume that you want to write an additional unit test
for the ImageValidator class that ensures that all JPEG images are considered valid
regardless of capitalization (anywhere in the name or the extension). Again, embed-
ding all possible combinations in a data table would be time-consuming and error-
prone.

 You can calculate several possible variations with some Groovy magic, as shown in
the following listing.

@Unroll("Checking image name #pictureFile")
def "All kinds of JPEG file are accepted"() {
 given: "an image extension checker"
 ImageNameValidator validator = new ImageNameValidator()

 expect: "that all jpeg filenames are accepted regardless of case"
 validator.isValidImageExtension(pictureFile)

 where: "sample image names are"
 pictureFile <<
 GroovyCollections.combinations([["sample.","Sample.","SAMPLE."],
 ['j', 'J'], ['p', 'P'],['e','E',''],['g','G']])*.join()
}

The where: block contains a sin-
gle statement. If you run the unit
test, you’ll see that this statement
creates 72 scenarios (from 3 × 2 ×
2 × 3 × 2 strings), as shown in fig-
ure 5.13.
 The code works as follows: The
combinations() method takes the
variations of the word sample, the
letters J, P, E, and G, and creates a
new collection that contains all
possible variations as collections

themselves. The input parameter is a string. To convert each individual collection to a
string, I call the join() method, which automatically creates a single string from a col-
lection of strings. Because I want to do this with all collections, I use the star-dot
Groovy operator (*.), which applies the join() method to all of them.

 If your head is spinning at this point, don’t worry! It took me a while to write this
statement, and as you gain more Groovy expertise, you’ll be able to write Groovy

Listing 5.15 Using Groovy combinations

"combinations ()"
creates a collection

of all variations.n() creates a
g from each

variation.

Figure 5.13 Creating 72 unit test runs from a single Groovy
statement
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

147Using data pipes for calculating input/output parameters

 This p
alway

for eac

This
depends
one; “sec

first with
one-liners as well. The example is supposed to impress you, but don’t be distracted by
the core lesson here, which is the flexibility of Spock data pipes.

5.3.2 Parameters that stay constant

In all examples of parameterized tests I’ve shown you so far, the parameters are differ-
ent for each scenario. But at times, one or more parameters are constant. Spock
allows you to use direct assignments if you want to indicate that a parameter is the
same for each scenario. Instead of the left-shift operator, you use the standard assign-
ment operator, as shown in the following listing.

def "Multipling #first and #second is always a negative number"() {
 given: "a calculator"
 Calculator calc = new Calculator()

 expect: "that multiplying a positive and negative number results in a
 negative number"
 calc.multiply(first,second) < 0

 where: "some scenarios are"
 first << [20,34,44,67]
 second = -1
}

The scenarios used for listing 5.16 are [20, -1], then [34, -1], [44, -1], and
finally [67,-1]. I admit that the example isn’t enticing. I needed to show it to you as a
stepping stone to the true use of the assignment operator in the where: block—
derived variables.

5.3.3 Parameters that depend on other parameters

You’ve seen how the assignment operator is used for constant variables in listing 5.16.
What’s not evident from the listing is that you can also refer to other variables in the
definition of a variable.

 In the next listing, the second parameter of the test is based on the first.

def "Multipling #first and #second is always a negative number (alt)"() {
 given: "a calculator"
 Calculator calc = new Calculator()

 expect: "that multiplying a positive and negative number results in a
 negative number"
 calc.multiply(first,second) < 0

 where: "some scenarios are"
 first << [20,34,44,67]
 second = first * -1
}

Listing 5.16 Constant parameters in Spock tests

Listing 5.17 Derived parameters in Spock tests

This parameter is different
for each scenario.

arameter is
s the same
h scenario.

This parameter is explicitly
defined; “first” is an integer.

 parameter
on another
ond” is the
minus sign.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

148 CHAPTER 5 Parameterized tests
Running this test shows how the second parameter is recalculated for each scenario
according to the value of the first, as shown in figure 5.14.

 This technique allows you to have variables that are dynamically generated based
on the context of the current scenario.

5.4 Using dedicated data generators
All the previous examples of data pipes use lists (Groovy ranges also act as lists) to
hold the parameters for each test iteration. Grouping parameters in a list is the more
readable option in my opinion, but Spock can also iterate on the following:

■ Strings (each iteration will fetch a character).
■ Maps (each iteration will pick a key).
■ Enumerations.
■ Arrays.
■ RegEx matchers.
■ Iterators.
■ Iterables.

This list isn’t exhaustive. Everything that Groovy can iterate on can be used as a data
generator. Chapter 2 even includes a Groovy Expando as an example of an iterator.
Iterables and iterators are interfaces, which means that you can implement your own
classes for the greatest control of how Spock uses parameters. Even though custom
implementations can handle complex transformations of test data when required, I
consider them a last-resort solution because they’re not always as readable as simpler
data tables. The solutions offered by Spock are compared in figure 5.15.

Figure 5.14 Derived values
are recalculated for each test
run. Here the second parameter
is always the negative
representation of the first one.

Data tables

Data tables with expressions

Data pipes with lists

Flexibility Readability

Custom iterators

Figure 5.15 All solutions shown for
parameterized Spock tests. Data
tables are limited, but readable by
even nontechnical people. All other
techniques sacrifice readability for
more expressive power.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

149Using dedicated data generators

Get
lin
If you need to create a custom iterator for obtaining business data, you should always
ask yourself whether the transformation of the data belongs in the business class that
you’re trying to test, or whether it’s part of the iterator.

 Before trying custom iterators, you should spend some time determining whether
you can use existing classes in your application that already return data in the format
that you expect. As an example, assume you have a text file that holds image names
that your program can accept, as shown in figure 5.16.

 The content of the file validImageNames.txt is as follows:

hello.jpg
another.jpeg
modern0034.JPEG
city.Png
city_004.PnG
landscape.JPG

To read this file, you don’t need a custom iterator. The Groovy File class already con-
tains a readLines() method that returns a list of all lines in a file. The respective
Spock test is shown in the following listing.

@Unroll("Checking image name #pictureFile")
def "Valid images are PNG and JPEG files"() {
 given: "an image extension checker"
 ImageNameValidator validator = new ImageNameValidator()

 expect: "that all filenames are accepted"
 validator.isValidImageExtension(pictureFile)

 where: "sample image names are"
 pictureFile << new
 File("src/test/resources/validImageNames.txt")
 .readLines()
}

Listing 5.18 Using existing data generators

Groovy reads the lines from a text file
and passes them on to Spock. Spock
uses each line to create a scenario.

given:

.jpg

expect: where:

hello.jpg
another.jpeg
modern0034.JPEG
city.png
…

.jpg

.png

Figure 5.16 Using a text file
as a data source for a
parameterized test

s a list of all
es of the file
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

150 CHAPTER 5 Parameterized tests
Here Groovy opens the file, reads its lines in a list, and passes them to Spock. Spock
fetches the lines one by one to create all the scenarios of the test. Running the test
produces the output shown in figure 5.17.

 Before resorting to custom iterators, always see whether you can obtain data with
your existing application code or GDK/JDK facilities.9 Always keep in mind the excel-
lent facilities of Groovy for XML and JSON reading (these were covered in chapter 2).

5.4.1 Writing a custom data generator

You show the unit test with the valid image names to your business analyst in order to
explain what’s supported by the system. The analyst is impressed, and as a new task,
you get the following file named invalidImageNames.txt:

#Found by QA
starsystem.tiff
galaxy.tif

#Reported by client

 bunny04.gif
 looper.GIF
 dolly_take.mov
 afar.xpm

The file can’t be used as is in a unit test. It contains comments that start with the #
sign, it has empty lines, and it even has tabs in front of some image names.

 You want to write a Spock test that checks this file and confirms the rejection of the
image names (they’re all invalid). It’s obvious that the Groovy File class can’t help
you in this case; the file has to be processed before it’s used in the Spock test.10

9 Or even classes from Guava, Apache commons, CSV reading libraries, and so on.
10 In this simple example, you could clear the file contents manually. In a larger file, this isn’t practical or even

possible.

Figure 5.17 Reading test values from a file by using Groovy code
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

151Using dedicated data generators

Instr
to rea

cust
 To solve this new challenge, you should first create a custom data iterator, as shown
in the next listing.

public class InvalidNamesGen implements Iterator<String>{

 private List<String> invalidNames;
 private int counter =0;

 public InvalidNamesGen() {
 invalidNames = new ArrayList<>();
 parse();
 }

 private void parse() {
 [...code that reads the file and discards
 empty lines, tabs and comments not shown for brevity...]
 }

 @Override
 public boolean hasNext() {
 return counter < invalidNames.size();
 }

 @Override
 public String next() {
 String result = invalidNames.get(counter);
 counter++;
 return result;
 }

 @Override
 public void remove() {
 }
}

There’s nothing Spock-specific about this class on its own. It’s a standard Java iterator
that reads the file and can be used to obtain string values. You can use this iterator
directly in Spock, as shown in the next listing.

@Unroll("Checking image name #pictureFile")
def "Valid images are PNG and JPEG files"() {
 given: "an image extension checker"
 ImageNameValidator validator = new ImageNameValidator()

 expect: "that all filenames are rejected"
 !validator.isValidImageExtension(pictureFile)

 where: "sample image names are"
 pictureFile << new InvalidNamesGen()
}

Listing 5.19 Java iterator that processes invalidImageNames.txt

Listing 5.20 Using Java iterators in Spock

Class will return
strings (lines).

Generate values while lines
are present in the file.

Get the next line
from the file.

No need to implement
this for this example

This time you expect
invalid images.

uct Spock
d strings
from the
om class.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

152 CHAPTER 5 Parameterized tests
If you run this test, you’ll see that the file is correctly cleaned up and processed, as
shown in figure 5.18. Empty lines, comments, and tabs are completely ignored, and
only the image names are used in each test scenario.

 Happy with the result, you show the new test to your business analyst (thinking that
you’re finished). Apparently, you must face one last challenge.

5.4.2 Using multivalued data iterators

Your business analyst examines the two Spock tests (the one for valid images, and the
one for invalid images) and decides that two files aren’t needed. The analyst combines
the two files into one, called imageNames.txt, with the following content:

#Found by QA
starsystem.tiff fail
galaxy.tif fail

desktop.png pass
europe.jpg pass
modern0034.JPEG pass
city.Png pass
city_004.PnG pass

#Reported by client
 bunny04.gif fail
 looper.GIF fail
 dolly_take.mov fail
 afar.xpm fail

Writing custom data generators in Groovy

In this section and the next, I use Java to implement a custom data generator because
I assume that you’re more familiar with Java. It’s possible to write data generators in
Groovy. This would be the preferred method when you know your way around Groovy,
because you can include the generator inside the same source file as the Spock test
(instead of having two separate files, one in Java for the iterator and one in Groovy
for the Spock test).

Figure 5.18 Using a Java
iterator in a Spock unit
test allows for more fine-
grained file reading.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

153Using dedicated data generators
This file is similar to the other two, with one important difference. It contains the
word pass/fail in the same line as the image name.11 At first glance, it seems that you
need to write a test similar to listing 5.13, but using two custom iterators, as follows:

where: "sample image names are"
 pictureFile << new CustomIterator1()
 validPicture << new CustomIterator2()

The first iterator is responsible for reading the image names as before, and the second
iterator reads the pass/fail flag and converts it to a Boolean. This solution would cer-
tainly work, but having two custom iterators isn’t practical. They would both share sim-
ilar code (both need to ignore empty lines), and keeping them in sync if the file
format changed would be a big challenge.

 Hopefully, with Spock tests you don’t need extra custom iterators for each parame-
ter. Spock supports multivalue iterators (powered by Groovy multivalued assign-
ments12), so you can obtain all your input/output parameters from a single iterator.
For illustration purposes, our example uses a custom iterator to fetch two variables,
but the same technique can work with any number of parameters. The iterator is
shown in the next listing.

public class MultiVarReader implements Iterator<Object[]>{

 private List<String> fileNames;
 private List<Boolean> validFlag;
 private int counter =0;

 public MultiVarReader() {
 fileNames = new ArrayList<>();
 validFlag = new ArrayList<>();
 parse();
 }

 private void parse() {
 [...code that reads the file and discards
 empty lines, tabs and comments not shown for brevity...]
 }

 @Override
 public boolean hasNext() {
 return counter< fileNames.size();
 }

 @Override
 public Object[] next() {
 Object[] result = new Object[2];

11 In reality, this file would be a large XLS file with multiple columns that contained both important and unre-
lated data.

12 You can find more details about Groovy multivalue assignments at htttp://www.groovy-lang.org/semantics
.html#_multiple_assignment.

Listing 5.21 Java multivalued iterator

Class will return
multiple values.

Generate values while
lines are present.

First parameter is the file, and second
parameter is the pass/fail result.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

htttp://www.groovy-lang.org/semantics.html#_multiple_assignment
htttp://www.groovy-lang.org/semantics.html#_multiple_assignment

154 CHAPTER 5 Parameterized tests

Th
re

pa
 result[0] = fileNames.get(counter);
 result[1] = validFlag.get(counter);
 counter++;
 return result;
 }

 @Override
 public void remove() {
 }
}

Here the defined iterator returns two objects. The first object is the image name, and
the second object is a Boolean that’s true if the image should be considered valid,
and false if the image name should be rejected. Notice again that there’s nothing
Spock-specific about this class. It’s a normal Java class.

 The Spock test that uses this multivalue iterator is shown in the following listing.

@Unroll("Checking image name #pictureFile with result=#result")
def "Valid images are PNG and JPEG files only 2"() {
 given: "an image extension checker"
 ImageNameValidator validator = new ImageNameValidator()

 expect: "that all filenames are categorized correctly"
 validator.isValidImageExtension(pictureFile) == result

 where: "sample image names are"
 [pictureFile,result] << new MultiVarReader()
}

In the Spock test, the left-shift operator is used as before, but this time the left side is a
list of parameters instead of a single parameter. Spock reads the respective values from
the data generator and places them in the parameters in the order they’re mentioned.
The first value that comes out of the data generator is placed in the first parameter
(the image name, in this case), and the second value from the generator (the Boolean
flag, in this case) is placed in the second parameter. Running the test produces the
output in figure 5.19.

Listing 5.22 Using multivalued iterators in Spock

No need to
implement this

Result is now an
output parameter.

e iterator
ads both
rameters
at once.

Figure 5.19 Multivalued iterators.
For each test run, Spock reads both
the input (image filename) and the
output parameter (result of validity)
from the data file.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

155Working with third-party data generators

Two pa
will b
this S

p
a

eter
This capability of the left-shift operator to handle multivalues isn’t restricted to data
generators (although that’s where it’s most useful). You can perform multivalue
parameter assignments by using plain data pipes, as shown in the following listing.

@Unroll("Checking harcoded image name #pictureFile with #result")
def "Valid images are PNG and JPEG files only"() {
 given: "an image extension checker"
 ImageNameValidator validator = new ImageNameValidator()

 expect: "that all filenames are categorized correctly"
 validator.isValidImageExtension(pictureFile) == result

 where: "sample image names are"
 [pictureFile,result] << [["sample.jpg",true],
 ["bunny.gif",false]]
}

The right side of the assignment contains a list of all scenarios (which are lists). For
each scenario, Spock again picks the first element and places it in the first variable of
the left list. The second element from the scenario is placed in the second parameter,
and so on.

5.5 Working with third-party data generators
With the current breadth of Java/Groovy input libraries that handle text, JSON, XML,
CSV, and other structured data, writing custom iterators that can handle your specific
business case is easy.

 If you’ve already invested in JUnit tools that generate random data or construct
data according to your needs, adapting them for your Spock tests should be easy. If
they already implement the iterator interface, you can use them directly, or you can
wrap them in your own data generator.

 If your application is using a lot of data generators, you might also find the Spock
genesis library (https://github.com/Bijnagte/spock-genesis) useful. It can be thought
of as a meta-generator library because it allows you to do the following:

■ Lazily create input data
■ Compose existing generators into new ones
■ Filter existing generators using predicates/closures
■ Randomize or order the output for other generators

Always remember that your data generators can be written in both Java and Groovy. If
you find a library in Java that suits your needs, you can integrate it directly in Spock.

 A perfect example of this approach is the jFairy data generator library (https://
github.com/Codearte/jfairy). The library is written in Java, but it can easily be used in
Spock. Its own unit tests are implemented in Spock.

Listing 5.23 Using multivalued assignments in Spock

rameters
e used in
pock test
ictureFile
nd result.

Multivalue assignment: the first param
is pictureFile, and the second is result.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

https://github.com/Codearte/jfairy
https://github.com/Codearte/jfairy
https://github.com/Bijnagte/spock-genesis

156 CHAPTER 5 Parameterized tests
5.6 Summary
■ Parameterized tests are tests that share the same test logic but have multiple

input and output parameters.
■ Spock supports parameterized tests via the where: block, which defines the

individual scenarios.
■ The simplest use of the where: block is with data tables; you directly embed all

parameters inside the source code.
■ Data tables are readable because they collect in a single place the names and

values of all parameters.
■ Each scenario in the where: block has its own lifecycle. A parameterized test

with N scenarios will spawn N runs.
■ The @Unroll annotation can be used to report individual runs of each scenario

in its own test.
■ In conjunction with the @Unroll annotation, it’s possible to change the name of

each test method to include the input and output parameters. This makes
reporting clear, and pinpointing a failed test is easy.

■ You can use statements and Groovy expressions in data tables. You should be
careful not to harm the readability of the test.

■ A more advanced form of parameterized tests is data pipes. These allow the
automatic calculation of input/output parameters when embedding them
directly in the source code isn’t practical (either because of their size or their
complexity).

■ Data pipes can get data from a collection, Groovy ranges, strings, and even reg-
ular expression matchers. Anything that’s iterable in Groovy can be used as a
data generator.

■ Test parameters can depend on other test parameters. In addition, defining a
test parameter as a constant is easy.

■ Existing libraries/classes can be easily wrapped in a data generator or used
directly as an iterator.

■ Spock can assign multiple variables at once for each scenario. This is also possi-
ble in plain Groovy. Data generators aren’t limited to generating data for a sin-
gle value. Multivalued data generators can be used to handle all input/output
parameters of a scenario in a single step.

■ Data generators can be implemented in both Java and/or Groovy.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

Mocking and stubbing
This chapter starts with a quick reminder of the theory behind mocks and stubs
(the terminology used by Spock). If you’ve never used them before in your unit
tests, feel free to consult other external sources to complete your knowledge.1 You
may have already seen them as test doubles or fake collaborators, so if you know the the-
ory, you can skip ahead to section 6.2 in order to see the implementation of Spock
for fake objects.

 Fake collaborators are a way to isolate a single class with your exact input and
output specification so that you can examine it under a well-controlled environ-
ment. I briefly hinted about the mocking/stubbing capabilities of Spock in chapter

This chapter covers
■ A quick introduction to fake collaborators
■ Instructing Spock stubs with canned responses
■ Verifying interactions with Spock mocks
■ Verifying arguments or return values of the

class under test

1 A good start is the book Effective Unit Testing by Lasse Koskela (Manning, 2013)—chapter 3 in particular.
157

Licensed to Stephanie Bernal <nordicka.n@gmail.com>

158 CHAPTER 6 Mocking and stubbing
3 and promised to show you much more when the time comes (now!). Unlike JUnit,
Spock has native support for mocks, and there’s no need to add an external library to
use this technique. The syntax for mocking and stubbing is much simpler than other
mocking frameworks.

6.1 Using fake collaborators
Let’s say you have a Java class in your application that shuts down a nuclear reactor
when radiation levels from a sensor pass a critical threshold. You want to write a unit
test for that class. It wouldn’t be realistic to bombard the real sensor with radiation just
to see your unit test work. It’s also not realistic to shut down the nuclear reactor when-
ever the unit test runs.

 For a more run-of-the-mill example, assume that your Java class sends a reminder
email to a customer whenever an invoice isn’t settled on time. Re-creating a delayed
payment in the unit test would be difficult, and sending a real email each time the
unit test runs would also be unrealistic.

 For cases like this, you need to employ fake collaborators in your unit test. You
need to fake the way your class gets the current sensor values as well as the communi-
cation with the nuclear reactor, and you also need to fake the delayed payment and
the email server. A fake collaborator is a special class that replaces a real class in order to
make its behavior deterministic (preprogrammed). No technical limitation ties fake
classes to unit tests. But unit tests are much more flexible if they employ the power of
fake classes (which is the running theme of this chapter).

 A visual way to describe a fake object is shown in figure 6.1. The core of each circle
is a class, and the arcs around it are its methods.2

6.1.1 Using fake collaborators to isolate a class in unit tests

If a bug shows up in a real system (or in an integration test), it’s not immediately clear
which class or classes are responsible for it. In a unit test that contains only a real class
(as in figure 6.1), you can preprogram its collaborators with “correct” and “expected”
answers. Thus, it’s easy to focus the unit test on how this single class works and make
sure that it contains no bugs (at least on its own).

 These fake collaborators aren’t real classes because

■ They implement only the methods needed for the unit test and nothing else.
■ When they make requests to the real class, the request parameters are prepro-

grammed and known in advance.
■ When they answer requests from the real class, their answers are also prepro-

grammed.

The point to remember is that only the programmer knows the existence of the fake
classes. From the point of view of the real class, everything is running normally. The
real class thinks that it runs on a live system (because the fake classes still implement

2 See https://docs.oracle.com/javase/tutorial/java/concepts/object.html for this drawing style.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

https://code.google.com/p/powermock/wiki/PowerMockRule
https://code.google.com/p/powermock/wiki/PowerMockRule
https://docs.oracle.com/javase/tutorial/java/concepts/object.html

159Using fake collaborators
the agreed-upon interfaces) without understanding that the whole stage is a single
unit test.

 For the rest of this chapter, I use the terms stub and mock for this type of fake class
because this is the terminology used by Spock.

6.1.2 Faking classes in Spock: mocks and stubs

Mocks and stubs are a further subdivision of fake objects. Here are the definitions I
first introduced in chapter 3:

■ A stub is a fake class that comes with preprogrammed return values. It’s injected
into the class under test so that you have absolute control over what’s being
tested as input. In figure 6.1, the fake sensor is a stub so that you can re-create
any radiation levels you want.

■ A mock is a fake class that can be examined after the test is finished for its inter-
actions with the class under test (for example, you can ask it whether a method
was called or how many times it was called). In figure 6.1, the fake reactor class
is a mock so that you can ask whether its shutdown() method was called after
the unit test has ended.

In practice, because mocks can also be stubbed, you can think of them as a superset of
stubs (which cannot be used for verification of interactions). In theory, you could
write all your Spock tests using only mocks. For readability, it’s best to decide in
advance which type of fake object you’re creating.

Real system

Unit test

Real
sensor

Fake
sensor

Real
class

Real
class

Real
reactor

Fake
reactor

Figure 6.1 By using fake classes, you can define your own sensor values
and replace the real nuclear reactor with a fake one. You can safely mimic
any possible situation you want without affecting the real hardware.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

160 CHAPTER 6 Mocking and stubbing
6.1.3 Knowing when to use mocks and stubs

Knowing how to mock classes isn’t enough for effective unit tests. You also need to
know which classes to mock out of all the collaborators. In a large enterprise project,
your class under test might interface with several other classes. You should ask yourself
which classes need mocking and which classes can use their real implementation.3

 I’ve seen both sides of the spectrum. Some developers don’t use mocking at all,
making all unit tests run as integration tests. I’ve also seen excessive mocking of classes
that don’t need it. The former situation isn’t desirable because all tests will be slow
and complex. The latter situation has its own problems as well. Upgrading badly
designed mocked tests is difficult when the production code changes because of
unforeseen business requirements.

 As a general rule of thumb, you should mock/stub all collaborator classes that do
the following:

■ Make the unit test nondeterministic.
■ Have severe side effects.
■ Make the test depend on the computation environment.
■ Make the test slow.
■ Need to exhibit strange behavior typically not found on a real system.

The first case is obvious. If you’re writing a unit test for a game that uses electronic
dice, you can’t possibly use the real dice class in your unit test. Instead, you mock it to
make it return a particular number that fits your scenario.

Unit testing and filmmaking analogy

If you still have trouble understanding the difference between mocks and stubs, imag-
ine that instead of a programmer, you’re a film director. You want to shoot a scene
(create a unit test). First you set up the actors, camera, and sound that will create
the illusion of the scene (you prepare stubs and mocks). You let the camera roll (run
the unit test) and check the camera screen for the result (examine the test result).

Stubs are your sound technician, your lighting experts, and your camera man. You
give them instructions before each scene, as you preprogram your stubs. They’re es-
sential for filming your scene, as stubs are essential for the correct functionality of
your class under test. But they don’t appear in the recorded scene, as stubs are never
used for test verification.

Mocks are your actors. You also give them a script before the scene for their dialogue,
in the same way that you prepare your mocks (for their interaction with the class under
test). After filming is finished, you check their onscreen performance as you check
the interactions of your mocks.

Under dire circumstances, you can force an actor to hold the boom microphone or the
camera (use a mock in place of a stub), but you can never create an actor out of a
technician on the spot (you can’t use a stub for interaction verification).

3 And which should be spies in some rare cases. Spies are explained in chapter 8.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

161Using fake collaborators
 The second case was demonstrated in chapter 3. If you have code that charges
credit cards, prints documents, launches missiles, or shuts down nuclear reactors, you
must mock it so that nothing bad happens when a unit test runs.

 The third case is about creating reliable tests that always have the same behavior
when they run either on the build server or a development workstation. Code that
reads environment variables, reads external setting files, or asks for user input should
be mocked with the variables used in that specific scenario.

 In large enterprise projects, tests can be slow. A common speed-up technique is to
mock out code that reads files, communicates with a database, or contacts an external
network service. This makes the test CPU-bound instead of I/O-bound so tests run at
the maximum capacity of the processor.

 Finally, you need to stub objects when you want to create a specific behavior that’s
hard to reproduce with the real class. Common cases are emulating a full hard disk or
a complete failure in the network.

 The corollary of the preceding list is that if you have a collaborator class that
doesn’t depend on external services or the environment, doesn’t perform I/O opera-
tions, and is fast in its responses, then you can use it as is in a unit test (with its real
implementation).

6.1.4 Exploring a sample application for an electronic shop system

The running example for this chapter is an expanded version of the e-shop system that
you saw in chapter 4. Figure 6.2 shows a high-level overview of the system under test.

The class under test is always a real class

I’m always baffled by questions in Stack Overflow and other forums and mailing lists
indicating that people have difficulties with mocking because they try to mock the class
under test instead of its collaborators. Some advanced unit tests need this (I’ll show
you spies in chapter 8), but this technique is only for extreme corner cases of legacy
code. In vanilla unit tests, the class under test is always a real class. Mocks are used
for its collaborators only. Even then, not all collaborators need to be mocked.

Buyer

Checkout

Check
availability Charge

Basket

Inventory Credit
card

Products

Figure 6.2 An extended e-shop that has
an inventory and charges credit cards
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

162 CHAPTER 6 Mocking and stubbing

Checks
a p
In this e-shop, the client can browse product pages and add them to an electronic bas-
ket as before. But when the client checks out, two additional actions are performed.
First, the inventory is checked to verify that the products are indeed ready for dis-
patching. Second, the credit card of the client is charged using an external preexist-
ing service (which is the responsibility of another company).

 The Java skeleton for this e-shop is shown in the following listing, and it’s similar to
the one introduced in chapter 4.

public class Product {
 private String name;
 private int price;
 private int weight;
 [...getters and setters..]

}
public class WarehouseInventory {

 public int isProductAvailable(String productName)
 {
 [...code redacted for brevity..]
 }

 public boolean isProductAvailable(String productName,int count)
 {
 [...code redacted for brevity..]
 }

 public boolean isEmpty()
 {
 [...code redacted for brevity..]
 }

}
public class Basket {

 public void addProduct(Product product) {
 addProduct(product, 1);
 }

 public void addProduct(Product product, int times) {
 [...code redacted for brevity..]
 }

 public int getProductTypesCount() {
 [...code redacted for brevity..]
 }

 public void setWarehouseInventory(WarehouseInventory
 warehouseInventory) {
 [...code redacted for brevity..]
 }

 public boolean canShipCompletely() {
 [...code redacted for brevity..]
 }
}

Listing 6.1 Java skeleton code for the e-shop

Simple holder class
for a product

Contains stocked products—
we’ll stub this

 whether
roduct is
stocked

Quick check of
product availability

Class under test

Triggered
from the UI

Setter
injection

Method that needs
to be tested
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

163Controlling input to the class under test with stubs
Just by looking at figure 6.2, you can already guess which class you’ll stub and which
class you’ll mock. The inventory class will be stubbed (so you can define the stock lev-
els of various products, regardless of the real warehouse), and the credit card system
will be mocked (so you don’t charge real credit cards when a unit test runs).

 I’ll use this sample application throughout the chapter for increasingly complex
examples of Spock unit tests that contain mocks and stubs.

6.2 Controlling input to the class under test with stubs
Now that you know the theory behind mocks and stubs and the system that you’ll test,
you’re ready to see how to use them in your Spock tests. Let’s start with stubs, which
are simpler. You stub all collaborator classes that are used by your class under test but
aren’t otherwise tested. Either they have their own unit tests or they’re external librar-
ies and frameworks that are assumed to work correctly.

 In general, your class under test makes requests to your stubs. You need to tell
Spock what to do when any of the stubbed methods are called. By default, Spock won’t
complain if a method is called that wasn’t explicitly stubbed.

 Therefore, creating a stub is a two-step process:

1 Showing Spock which class won’t use its real implementation and instead will
be stubbed

2 Declaring what will happen when any of the stubbed methods are called by the
class under test (what the return values will be)

6.2.1 Basic stubbing of return values

The first thing you want to test is the canShipCompletely() method of the basket
from listing 6.1. This method returns true when all products selected by the customer
are available in the warehouse, and false in any other case. You’ll stub the warehouse
inventory so that you can emulate both cases: the product is in stock and the product
isn’t currently available.

 The warehouse inventory is a concrete class that’s used by the basket class during
checkout. Imagine that this class is part of an external system that you don’t have any
control over. You don’t want your unit tests to be based on the real inventory of this
e-shop. You need a way to trick the inventory to contain what you want for each busi-
ness scenario that you test. The following listing shows an example of stubbing the
warehouse inventory.

def "If warehouse is empty nothing can be shipped"() {
 given: "a basket and a TV"
 Product tv = new Product(name:"bravia",price:1200,weight:18)
 Basket basket = new Basket()

 and:"an empty warehouse"
 WarehouseInventory inventory = Stub(WarehouseInventory)

Listing 6.2 Creating a simple stub with Spock

Creates
Spock stub
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

164 CHAPTER 6 Mocking and stubbing

I

u

c

In
the w

t

 inventory.isEmpty() >> true
 basket.setWarehouseInventory(inventory)

 when: "user checks out the tv"
 basket.addProduct tv

 then: "order cannot be shipped"
 !basket.canShipCompletely()
}

The most important lines from listing 6.2 are the following:

WarehouseInventory inventory = Stub(WarehouseInventory)
inventory.isEmpty() >> true

The first line creates a Spock stub that looks and “acts” as the class WarehouseInven-
tory, but all methods that are called on this stub are intercepted automatically by
Spock and never reach the real implementation.

 The second line uses the right-shift operator. This special Spock operator (remem-
ber that Groovy allows for operator overloading, unlike Java) hardwires the isEmpty()
method to return true regardless of the real implementation of the original class.
When the basket is asked to respond about the shipping status of the order it calls
(behind the scenes), the stubbed method gets a negative result from the inventory.

 To stub a method for specific arguments, you can use the right-shift operator
directly on the method call you want to emulate, as shown in the next listing.

def "If warehouse has the product on stock everything is fine"() {
 given: "a basket and a TV"
 Product tv = new Product(name:"bravia",price:1200,weight:18)
 Basket basket = new Basket()

 and:"a warehouse with enough stock"
 WarehouseInventory inventory = Stub(WarehouseInventory)
 inventory.isProductAvailable("bravia",1) >> true
 inventory.isEmpty() >> false
 basket.setWarehouseInventory(inventory)

 when: "user checks out the tv"
 basket.addProduct tv

 then: "order can be shipped right away"
 basket.canShipCompletely()
}

Here you change the inventory to emulate the happy scenario in which the product
exists in the warehouse. It’s also possible to differentiate method calls according to
their arguments and stub them with different return results. This is demonstrated in
the following listing.

Listing 6.3 Stubbing specific arguments

Instructs the stub to return
true when isEmpty() is callednjects the

stub into
the class
nder test

Calls the stub
behind the scenes

Creating a
Spock stub

Instructing the stub to
return true when specifi
arguments are used

structing
arehouse

o respond
 with false
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

165Controlling input to the class under test with stubs

t

def "If warehouse does not have all products, order cannot be shipped"() {
 given: "a basket, a TV and a camera"
 Product tv = new Product(name:"bravia",price:1200,weight:18)
 Product camera = new Product(name:"panasonic",price:350,weight:2)
 Basket basket = new Basket()

 and:"a warehouse with partial availability"
 WarehouseInventory inventory = Stub(WarehouseInventory)
 inventory.isProductAvailable("bravia",1) >> true
 inventory.isProductAvailable("panasonic",1) >> false
 inventory.isEmpty() >> false
 basket.setWarehouseInventory(inventory)

 when: "user checks out both products"
 basket.addProduct tv
 basket.addProduct camera

 then: "order cannot be shipped right away"
 !basket.canShipCompletely()
}

Finally, you can group all stubbing instructions in a single code block in a similar way
to the with() method shown in chapter 4. The following code listing behaves in
exactly the same way as listing 6.4; only the syntax differs. You should decide for your-
self which of the two you prefer.

def "If warehouse does not have all products, order cannot be shipped
 (alt)"() {
 given: "a basket, a TV and a camera"
 Product tv = new Product(name:"bravia",price:1200,weight:18)
 Product camera = new Product(name:"panasonic",price:350,weight:2)
 Basket basket = new Basket()

 and:"a warehouse with partial availability"
 WarehouseInventory inventory = Stub(WarehouseInventory) {
 isProductAvailable("bravia",1) >> true
 isProductAvailable("panasonic",1) >> false
 isEmpty() >> false
 }
 basket.warehouseInventory = inventory

 when: "user checks out both products"
 basket.addProduct tv
 basket.addProduct camera

 then: "order cannot be shipped right away"
 !basket.canShipCompletely()
}

Listing 6.4 Argument-based stub differentiation

Listing 6.5 Grouping all stubbed methods

Different stub results
depending on the argumen

Compact way of
stubbing methods

Setter injection
using Groovy style
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

166 CHAPTER 6 Mocking and stubbing
Notice that in all the preceding code listings, the real code of warehouse inventory
never runs. The Spock unit tests shown can run on their own, regardless of the status
of the real inventory. As long as the signature of the warehouse class stays the same
(that is, the method definitions), these unit tests will continue to run correctly, even if
new methods are added to the original class. Now you know how you can stub classes
in Spock!

6.2.2 Matching arguments leniently when a stubbed method is called

The previous section showed how to stub methods by using the exact arguments you
expect to be called. This works for trivial tests, but for bigger tests, this precision isn’t
always needed. For example, if I wanted to create a unit test that involved 10 different
products, I’d have to stub 10 different calls for the same method.

 Spock offers a more practical solution in the form of argument matchers when you
don’t want so much detail. The character Spock uses is the underscore (_), and in
general it plays the role of “I don’t care what goes in here,” depending on the context
(as you’ll see throughout this chapter). The following listing shows the use of the
underscore as an argument matcher.

def "If warehouse has both products everything is fine"() {
 given: "a basket, a TV and a camera"
 Product tv = new Product(name:"bravia",price:1200,weight:18)
 Product camera = new Product(name:"panasonic",price:350,weight:2)
 Basket basket = new Basket()

 and:"a warehouse with enough stock"
 WarehouseInventory inventory = Stub(WarehouseInventory)
 inventory.isProductAvailable(_, 1) >> true
 basket.setWarehouseInventory(inventory)

 when: "user checks out the tv and the camera"
 basket.addProduct tv
 basket.addProduct camera

 then: "order can be shipped right away"
 basket.canShipCompletely()

Here I’ve stubbed the inventory method only once, and I know that it can be called
for all products I ask for, regardless of their names.4 I’ve chosen this approach because
in this particular test I’m not interested in examining the correctness of the ware-
house (the focus of the test is still the basket class).

Listing 6.6 Using argument matchers in stubs

4 Unlike Mockito, Spock supports partial matching of arguments, where some have specific values and some
don’t. Mockito requires that all arguments use matchers if any matcher is used at all.

Stubbing a method call
regardless of the value
of an argument
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

167Controlling input to the class under test with stubs

.

 It’s also possible to use matchers for all arguments of a method, resulting in power-
ful stubbing combinations. The following listing shows an example.

def "If warehouse is fully stocked stock everything is fine"() {
 given: "a basket, a TV and a camera"
 Product tv = new Product(name:"bravia",price:1200,weight:18)
 Product camera = new Product(name:"panasonic",price:350,weight:2)
 Basket basket = new Basket()

 and:"a warehouse with limitless stock"
 WarehouseInventory inventory = Stub(WarehouseInventory)
 inventory.isProductAvailable(_, _) >> true
 basket.setWarehouseInventory(inventory)

 when: "user checks out multiple products"
 basket.addProduct tv,33
 basket.addProduct camera,12

 then: "order can be shipped right away"
 basket.canShipCompletely()

Here I’ve instructed my warehouse to answer that the product is always in stock,
regardless of the product. I don’t care if the class under test asks for a TV or a camera;
it will always be in stock.

 Stubbing a method regardless of its arguments is a powerful technique that can be
helpful in large unit tests in which the stub is a secondary dependency that’s outside
the focus of the test. Dispatchers, delegates, facades, decorators, and other design pat-
terns are perfect candidates for this kind of stubbing, as often they get in the way of
the class under test.

6.2.3 Using sequential stubs with different responses for each method call

Listing 6.5 showed how to differentiate the stub response based on the argument.
This is one dimension of different responses. The other dimension is to stub different
responses depending on the number of times a method is called.

 This is accomplished with the unsigned right-shift operator (>>>), which was intro-
duced in chapter 3. An example is shown in the next listing.

def "Inventory is always checked in the last possible moment"() {
 given: "a basket and a TV"
 Product tv = new Product(name:"bravia",price:1200,weight:18)
 Basket basket = new Basket()

 and:"a warehouse with fluctuating stock levels"
 WarehouseInventory inventory = Stub(WarehouseInventory)
 inventory.isProductAvailable("bravia", _) >>> true >> false

Listing 6.7 Ignoring all arguments of a stubbed method when returning a response

Listing 6.8 Stubbing subsequent method calls

Stubbing a method for
all its possible arguments

Both these calls
will be matched.

First call will return
true, and second
will return false
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

168 CHAPTER 6 Mocking and stubbing

The
stu

a sec

 inventory.isEmpty() >>> [false, true]
 basket.setWarehouseInventory(inventory)

 when: "user checks out the tv"
 basket.addProduct tv

 then: "order can be shipped right away"
 basket.canShipCompletely()

 when: "user wants another TV"
 basket.addProduct tv

 then: "order can no longer be shipped"
 !basket.canShipCompletely()
}

The unsigned shift operator signifies to Spock that the expression following it will be
used as a response for each subsequent call of the exact same method. Multiple
answers can be chained together by using the normal shift operator, >>. In this listing
this happens with the isProductAvailableMethod(). The first time it will return true
and the second time it will return false to a query for a TV.

 An alternative syntax (and the one I prefer) is to use a collection after the
unsigned shift operator. Each item of the collection will be used in turn as a response
when the stubbed method is called. As with parameterized tests, remember that
Groovy has a more general idea of “iterable” things than Java, so you don’t have to use
a list as shown in listing 6.8.

6.2.4 Throwing exceptions when a stubbed method is called

I said in the introduction of this chapter that stubs are essential if you want to emulate
a hard-to-reproduce situation or a corner case that doesn’t typically happen with pro-
duction code. For large-scale applications, when the code that handles error condi-
tions can easily outweigh the code for happy-path scenarios, it’s essential to create unit
tests that trigger those error conditions.

 In the most common case, the error conditions come in the form of Java excep-
tions. These can be easily emulated, as shown in the following listing.

def "A problematic inventory means nothing can be shipped"() {
 given: "a basket and a TV"
 Product tv = new Product(name:"bravia",price:1200,weight:18)
 Basket basket = new Basket()

 and:"a warehouse with serious issues"
 WarehouseInventory inventory = Stub(WarehouseInventory)
 inventory.isProductAvailable("bravia", _) >> { throw new
 RuntimeException("critical error") }
 basket.setWarehouseInventory(inventory)

Listing 6.9 Instructing stubs to throw exceptions

Spock can also iterate
on a collection for
ordered responses.

The inventory stub is
called for the first time
behind the scenes.

 inventory
b is called
ond time.

Stub is instructed to
throw an exception
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

169Controlling input to the class under test with stubs
 when: "user checks out the tv"
 basket.addProduct tv

 then: "order cannot be shipped"
 !basket.canShipCompletely()
}

The basket class calls the warehouse class, and if anything goes wrong (even if an
exception is thrown), the canShipCompletely() method recovers by returning false
(while leaving the basket class in a valid state). To verify this capability of the basket
class, you need to instruct the warehouse to throw an exception when the stubbed
method is called.

 You still use the right-shift operator (>>) for stubbing, but instead of returning a
standard value as in the previous examples, you can place any Java code inside the
brackets (which in reality is a Groovy closure, as you know if you paid attention in
chapter 2).

 Inside the brackets, you can put any code with Java statements, so a useful capabil-
ity is to throw an exception. The beauty of Spock5 is that throwing exceptions isn’t
something extraordinary that requires special syntax. Instead, you’re offered a
generic way to do anything when a stubbed method is called, and throwing an excep-
tion is one possibility of many.

 The great power of using Groovy closures in Spock stubs is revealed fully in the
next section.

6.2.5 Using dynamic stubs that check arguments when responding

The previous section showed how to throw an exception in a stub by using a Groovy
closure. I consider Groovy closures a powerful feature, even in the presence of Java 8,
because the way Groovy closures are used in Spock is refreshing. In other mocking
frameworks, such as Mockito, you need to learn separate syntax semantics for argu-
ment catchers, exception throwing, and dynamic responses. In Spock, all these are
unified under Groovy closures.

 Before I show any code, I’ll repeat the suggestion in chapter 2. If you don’t feel
comfortable with Groovy closures (or Java 8 lambda expressions), feel free to skip this
section and come back later. Closures can also be used with mocks, as you’ll see later
in this chapter.

5 Thanks to Groovy's way of handling all exceptions as unchecked.

Closures—the Swiss army knife of Groovy

I briefly talked about closures in chapter 2. In their simplest form, you can think of
them as anonymous Java functions with greater flexibility. If you’ve already worked
with Java 8 and lambda expressions, Groovy closures will be familiar.

Ensures that the basket class
can recover from the exception
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

170 CHAPTER 6 Mocking and stubbing

 To make this example more interesting, I’ll add another dependency to the basket
class. This time, it will be an interface (instead of a concrete class), as shown here:

public interface ShippingCalculator {
 int findShippingCostFor(Product product, int times);
}

This interface is responsible for shipping charges. It accepts a product and the num-
ber of times it was added in the basket, and returns the shipping costs (in whatever
currency the e-shop uses). The basket class is also augmented with a findTotalCost()
method that calls the shipping calculator behind the scenes in order to add shipping
charges to the product value. You want to test this new method of the basket class.

 As a business scenario, you choose a simple shipping strategy. For each product,
you add 10 dollars to the final cost for each time it’s added to the basket, regardless of
product type.6 A naive way of stubbing the shipping calculator would be the following:

ShippingCalculator shippingCalculator = Stub(ShippingCalculator)
shippingCalculator.findShippingCostFor(tv, 2) >> 20
shippingCalculator.findShippingCostFor(camera, 2) >> 20
shippingCalculator.findShippingCostFor(hifi, 1) >> 10
shippingCalculator.findShippingCostFor(laptop, 3) >> 30

Here you instruct the shipping module with specific responses according to the argu-
ments of the called method. This code isn’t readable and clearly suffers from verbos-
ity. Writing unit tests for a large number of products will also be difficult (imagine a
unit test that adds 100 products from an external source).

 With the power of closures, Spock allows you to capture a simple pricing strategy
with a single line of code! The following listing demonstrates this technique and
shows that Spock can stub both interfaces and concrete classes in an agnostic way.

def "Basket handles shipping charges according to product count"() {
 given: "a basket and several products"
 Product tv = new Product(name:"bravia",price:1200,weight:18)
 Product camera = new Product(name:"panasonic",price:350,weight:2)
 Product hifi = new Product(name:"jvc",price:600,weight:5)
 Product laptop = new Product(name:"toshiba",price:800,weight:10)
 Basket basket = new Basket()

 and: "a fully stocked warehouse"
 WarehouseInventory inventory = Stub(WarehouseInventory)
 inventory.isProductAvailable(_ , _) >> true
 basket.setWarehouseInventory(inventory)

 and: "a shipping calculator that charges 10 dollars for each product"
 ShippingCalculator shippingCalculator = Stub(ShippingCalculator)

6 Not really sustainable for a true shop, but it’s sufficient for illustration purposes.

Listing 6.10 Stubs that respond according to arguments

Stubbing a
concrete class

Stubbing
a Java

interface
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

171Controlling input to the class under test with stubs

U

dyn

Ve
shipp

a

S

 i
 shippingCalculator.findShippingCostFor(_, _) >> { Product product, int
 count -> 10 * count}
 basket.setShippingCalculator(shippingCalculator)

 when: "user checks out several products in different quantities"
 basket.addProduct tv, 2
 basket.addProduct camera, 2
 basket.addProduct hifi
 basket.addProduct laptop, 3

 then: "cost is correctly calculated"
 basket.findTotalCost() == 2 * tv.price + 2 * camera.price + hifi.price
 + 3 * laptop.price + basket.getProductCount() * 10
}

Using the Groovy closure, you’ve instrumented the shipping calculator stub with your
selected pricing strategy in a single line of code. With that one line, the shipping cal-
culator can respond to 1, 2, or 100 products added to the basket. Its behavior is no
longer statically defined, but it can understand its arguments.

 For an even smarter stub, assume that the e-shop also sells downloadable goods. For
these, the shipping cost should obviously be zero. Again, a naive way to cater to this case
would be to instruct your stub with specific products to return 0—for example:

shippingCalculator.findShippingCostFor(ebook, _) >> 0

Doing this wouldn’t be scalable because if a unit test examines 10 different download-
able goods, you’ll have to manually stub the response 10 times. Remember that the
interface for the shipping calculator also gives you access to the product, as well as the
number of times it was added to the basket. Therefore, you can modify the Groovy clo-
sure to look at both arguments, as shown in the next listing.

def "Downloadable goods do not have shipping cost"() {
 given: "a basket and several products"
 Product tv = new Product(name:"bravia",price:1200,weight:18)
 Product camera = new Product(name:"panasonic",price:350,weight:2)
 Product hifi = new Product(name:"jvc",price:600,weight:5)
 Product laptop = new Product(name:"toshiba",price:800,weight:10)
 Product ebook = new Product(name:"learning exposure",price:30,weight:0)
 Product suite = new Product(name:"adobe essentials",price:200,weight:0)
 Basket basket = new Basket()

 and: "a fully stocked warehouse"
 WarehouseInventory inventory = Stub(WarehouseInventory)
 inventory.isProductAvailable(_ , _) >> true
 basket.setWarehouseInventory(inventory)

 and: "a shipping calculator that charges 10 dollars for each physical
 product"
 ShippingCalculator shippingCalculator = Stub(ShippingCalculator)

Listing 6.11 A smart stub that looks at both its arguments

sing a Groovy
closure for a

amic response

Adding different
quantities to the basket

rifying that
ing charges
re included

tubbing
a Java

nterface
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

172 CHAPTER 6 Mocking and stubbing

ure
oth

60 i
c

th
g

 shippingCalculator.findShippingCostFor(_, _) >> { Product product, int
 count -> product.weight==0 ? 0 :10 * count}
 basket.setShippingCalculator(shippingCalculator)

 when: "user checks out several products in different quantities"
 basket.addProduct tv,2
 basket.addProduct camera,2
 basket.addProduct hifi
 basket.addProduct laptop
 basket.addProduct ebook
 basket.addProduct suite,3

 then: "cost is correctly calculated"
 basket.findTotalCost() == 2 * tv.price + 2 * camera.price + hifi.price
 + laptop.price + ebook.price + 3 * suite.price+ 60
}

With a single Groovy code line, you’ve managed to instruct the shipping calculator to
use a different behavior for downloadable and physical products. If the product has
zero weight, shipping costs are free. In any other case, the standard charge of 10 dol-
lars/euros is returned.

 Using Groovy closures for argument matching is a technique that can be easily
abused. Use it only when it adds to the scalability and readability of your Spock test. In
simple tests, you might get away with direct stubbing of all argument combinations if
their number is manageable.

6.2.6 Returning stubs from the responses of other stubs

Before leaving stubs and diving into mocks, it’s worth demonstrating that Spock sup-
ports recursive stubbing. By this, I mean that it’s possible to have stubs return stubs as
responses, which themselves return stubs, and so on, until you get to values.

 In well-designed code (which correctly uses dependency injection), this technique
is not usually needed. It becomes handy for legacy code and incorrectly designed
enterprise code bases. To mimic legacy code, let’s assume that this is your basket class:

public class EnterprisyBasket{

 public EnterprisyBasket(ServiceLocator serviceLocator)
 {
 setWarehouseInventory(serviceLocator.getWarehouseInventory());
 }
 [...rest of implementation here...]
}

Here the basket class isn’t injected directly with its dependencies but instead gets a
ServiceLocator object that acts as an intermediary to the services needed. Here’s its
code:

public interface ServiceLocator {
 WarehouseInventory getWarehouseInventory();
 [... other services here...]
}

Groovy clos
that uses b
arguments

s shipping
harges for
e physical
oods only.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

173Mocks: verifying values returned from the class under test

Ins
stub

ano

p
in
Spock can easily deal with this situation, as shown in the next listing.

def "If warehouse is empty nothing can be shipped"() {
 given: "a TV"
 Product tv = new Product(name:"bravia",price:1200,weight:18)

 and:"an empty warehouse"
 WarehouseInventory inventory = Stub(WarehouseInventory)
 inventory.isEmpty() >> true
 ServiceLocator serviceLocator = Stub(ServiceLocator)
 serviceLocator.getWarehouseInventory() >> inventory

 and: "a basket"
 EnterprisyBasket basket = new EnterprisyBasket(serviceLocator)

 when: "user checks out the tv"
 basket.addProduct tv

 then: "order cannot be shipped"
 !basket.canShipCompletely()
}

This listing uses only two levels of stubs, but it’s possible to use more if your legacy
code requires it.

6.3 Mocks: verifying values returned from the class
under test
Stubs are great when your class under test already has methods that allow you to
understand whether everything works as expected (such as the canShipCompletely()
method of the basket class). But most of the time, the only way to understand what
happened during the unit test is to have a “log” of what methods were called along
with their arguments and their responses.

 Mocks are the answer to this need. By mocking a collaborator of the class under
test, you not only can preprogram it with canned responses, but also can query it
(after the unit test has finished) about all its interactions.

Listing 6.12 Stubbing responses with other stubs

Spock has a huge range of options when it comes to mocks

Spock supports many features when it comes to mocking. Some are more useful than
others, some apply only to extreme cases, and some are so confusing that I avoid
them on purpose. This chapter shows the features I find useful (I’ve left out about
10% of Spock features). You can always consult the official Spock website as a ref-
erence.

Stub that will be
used by the class
under test

Stubbing of
intermediary class

tructing a
 to return
ther stub

Using the
arent stub
 the class

under test
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

174 CHAPTER 6 Mocking and stubbing

Inject
into

u

6.3.1 All capabilities of stubs exist in mocks as well

The first thing to get out of the way is that mocks are a superset of stubs. All code list-
ings I’ve shown you so far will work even if you use a mock. As an example, here’s list-
ing 6.2 written with a mock this time. Apart from a single line, the rest of the code is
exactly the same.

def "If warehouse is empty nothing can be shipped"() {
 given: "a basket and a TV"
 Product tv = new Product(name:"bravia",price:1200,weight:18)
 Basket basket = new Basket()

 and:"an empty warehouse"
 WarehouseInventory inventory = Mock(WarehouseInventory)
 inventory.isEmpty() >> true
 basket.setWarehouseInventory(inventory)

 when: "user checks out the tv"
 basket.addProduct tv

 then: "order cannot be shipped"
 !basket.canShipCompletely()
}

In Spock, you use stubs when you want to denote that the fake class you’re going to
use will come with only preprogrammed behavior and its interactions won’t be veri-
fied. Of the two listings, the semantically correct is 6.2 (with the stub) because the
warehouse inventory is never queried at the end of the unit test for its interactions
with the basket class.

 Spock enforces this convention, so although mocks will work in the place of stubs,
the opposite doesn’t apply. Attempting to use a stub in place of a mock will throw an
error when Spock runs the unit test.

6.3.2 Simple mocking—examining whether a method was called

Let’s add another collaborator class in the electronic basket example. In the following
listing, you’ll add the capability to charge credit cards.

public class Customer {
 private String name;
 private boolean vip = false;
 private String creditCard;
 [...getters and setters here...]
}
public enum CreditCardResult {

 OK, INVALID_CARD, NOT_ENOUGH_FUNDS;

Listing 6.13 Stubbing mocks

Listing 6.14 Java skeleton for credit card charging

Create a mock.

Instruct the mock to
return true when
isEmpty() is called.

 the mock
 the class
nder test.

This method calls
the mock behind
the scenes.

Simple object
for customer

 Credit card
number

Possible results from
charging a credit card
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

175Mocks: verifying values returned from the class under test

Ch
m

 in

Cre
mock f

in

This m
c

mock
the
}
public interface CreditCardProcessor {

 CreditCardResult sale(int amount, Customer customer);

 void shutdown();
}
public class BillableBasket extends Basket{

 private CreditCardProcessor creditCardProcessor;

 public void setCreditCardProcessor(CreditCardProcessor
 creditCardProcessor) {
 this.creditCardProcessor = creditCardProcessor;
 }

 public void checkout(Customer customer)
 {
 [...code redacted..]
 }

}

The credit card system is implemented by an external library (imagine that you don’t
even have the source code). Reading its API documentation, you see a big warning: its
developers explain that the shutdown() method must be called whenever a credit
card charge happens.7

 Your job is to write a unit test that verifies the call of this method by the basket class
without charging a credit card. You could get away with a stub if the credit card pro-
cessor had a method named shutdownWasCalled()! But it doesn’t.

 You can use a mock instead of a pure stub, as shown in the following listing.

def "credit card connection is always closed down"() {
 given: "a basket, a customer and a TV"
 Product tv = new Product(name:"bravia",price:1200,weight:18)
 BillableBasket basket = new BillableBasket()
 Customer customer = new
 Customer(name:"John",vip:false, creditCard:"testCard")

 and: "a credit card service"
 CreditCardProcessor creditCardSevice = Mock(CreditCardProcessor)
 basket.setCreditCardProcessor(creditCardSevice)

 when: "user checks out the tv"
 basket.addProduct tv
 basket.checkout(customer)

 then: "connection is always closed at the end"
 1 * creditCardSevice.shutdown()
}

7 Otherwise, the world will explode.

Listing 6.15 Verification of a mocked method

Interface provided
by an external system

arging
ethod

Must be called
after each charge

Setter
jection

Triggers credit
card injection

ating a
rom an
terface

Injecting the mock into
the class under test

ethod
alls the
 behind
scenes. Verifying called

method
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

176 CHAPTER 6 Mocking and stubbing
The important code line of this listing is the last one. Unlike all previous Spock tests, it
doesn’t contain a standard assert statement (checked according to Groovy truth). This
line is special Spock syntax and comes in this format:

N * mockObject.method(arguments)

When Spock sees this line, it makes the test pass only if that method on the mock has
been called N times with the arguments provided (which can also be argument match-
ers, as with stubs).

 The last line in the listing means, “After this test is finished, I expect that the num-
ber of times the shutdown() method was called is once.” The test will pass if this sen-
tence is true and will fail in any other case.

 Assume that with that unit test in place, a developer introduces a bug in the basket
class that calls the shutdown() method two times. Spock will instantly fail the test with
the error message shown in figure 6.3.

Spock knows the exact invocations of all mocks because during the test, it has
replaced the classes with its own proxies that record everything.

6.3.3 Verifying order of interactions

With the mock for the credit card processor in place, you can ensure that the credit
card service is shut down after the transaction (and without charging a real credit
card). But listing 6.13 misses the sequence of calls. How do you know that the shut-
down() method is called at the end, and not before the credit card charge step (which
would be an obvious bug)? Listing 6.13 doesn’t cover this scenario.

 Your first impulse, to check the order of calls that happen with the credit card ser-
vice, would be to write something like this:

then: "credit card is charged and CC service is closed down"
1 * creditCardSevice.sale(1200,customer)
1 * creditCardSevice.shutdown()

Figure 6.3 Spock fails the test when the mocked method is called twice.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

177Mocks: verifying values returned from the class under test

Creat
mo

an in
This won’t work as expected. Spock doesn’t pay any attention to the order of verifica-
tions inside a specific then: block. The preceding unit test will always pass, regardless
of the exact sequence of events (if both of them are correct on their own).

 The correct unit test needs to exploit the fact that multiple then: blocks are
checked in order by Spock,8 as shown in the following listing.

def "credit card connection is closed down in the end"() {
 given: "a basket, a customer and a TV"
 Product tv = new Product(name:"bravia",price:1200,weight:18)
 BillableBasket basket = new BillableBasket()
 Customer customer = new
 Customer(name:"John",vip:false, creditCard:"testCard")

 and: "a credit card service"
 CreditCardProcessor creditCardSevice = Mock(CreditCardProcessor
 basket.setCreditCardProcessor(creditCardSevice)

 when: "user checks out the tv"
 basket.addProduct tv
 basket.checkout(customer)

 then: "credit card is charged and"
 1 * creditCardSevice.sale(_, _)

 then: "the credit card service is closed down"
 1 * creditCardSevice.shutdown()
}

Notice that in this test, you want to focus on the order of events and nothing else, so
you’ve used unconditional argument matchers for the arguments of the sale()
method because you don’t care about them in this test. (Usually, there should be
another unit test focusing on them.)

6.3.4 Verifying number of method calls of the mocked class

If you already have significant experience with other mocking frameworks,9 you should
have noticed something strange in listings 6.13 and 6.14. In listing 6.14, you’re clearly
noting to Spock that you expect the sale() method to be called. But listing 6.13 men-
tions nothing about the sale() method. How does the test in listing 6.13 pass?

 It turns out that mocks and stubs created by Spock are lenient by default. The test
will fail only if the behavior of the mocks is contained in the then: block against your
explicit instructions. Calling a method of a mock that was never mentioned has no neg-
ative effect. Not calling a stubbed/mocked method also doesn’t affect the unit test.

Listing 6.16 Verification of a specific order of mocked methods

8 This was also shown in chapter 4.
9 And have been paying close attention to the code listings.

ion of a
ck from
terface

First this verification
will be checked.

This will only be checked if
the first verification passes.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

178 CHAPTER 6 Mocking and stubbing

S
a

 When you call a mocked method that doesn’t have explicit stubbing instructions,
Spock will return default values (false for Boolean variables, 0 for numbers, and null
for objects). If you want to make sure that a method isn’t called in a mock, you have to
declare it in the then: block as well. Pay close attention to the last statement of the fol-
lowing code listing.

def "Warehouse is queried for each product"() {
 given: "a basket, a TV and a camera"
 Product tv = new Product(name:"bravia",price:1200,weight:18)
 Product camera = new Product(name:"panasonic",price:350,weight:2)
 Basket basket = new Basket()

 and: "a warehouse with limitless stock"
 WarehouseInventory inventory = Mock(WarehouseInventory)
 basket.setWarehouseInventory(inventory)

 when: "user checks out both products"
 basket.addProduct tv
 basket.addProduct camera
 boolean readyToShip = basket.canShipCompletely()

 then: "order can be shipped"
 readyToShip
 2 * inventory.isProductAvailable(_ , _) >> true
 0 * inventory.preload(_ , _)
}

There are three important points to notice in listing 6.17 that relate to the three lines
in the then: block.

 Starting from the bottom, you want to make sure that the basket only queries the
warehouse, but never tampers with the stock levels. Therefore, the code explicitly
states that you expect zero invocations for the method that fills the inventory.

 The middle line verifies that the method of product availability is called twice
(because the test deals with two products). Because you want the basket to think that
the warehouse is full, you also stub the method to return true both times. Thus the
code in this line is both a mock expectation and a predefined stubbed response:10

2 * inventory.isProductAvailable(_ , _) >> true

This line says to Spock, “After this test is finished, I expect that the method
isProductAvailable() was called twice. I don’t care about the arguments. But when
it’s called, please return true to the class that called it.”

 The last thing to notice is that unlike previous code listings, the canShip-
Completely() method is called in the when: block, and only its result is checked in

Listing 6.17 Explicit declaration of interactions

10 This is a big difference from Mockito. In Mockito, you can separately stub a mock and verify it in another state-
ment. In Spock, you do both things at the same time.

Creating a
mock/stub

Mocks are only checks
in the when: block.tubbing

 mocked
method

Verifying that a method
was never called
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

179Mocks: verifying values returned from the class under test

expe
for
me

t

the then: block. The reason for this is that Spock records the interactions of mocks in
the when: block (which should always contain the trigger code). When using mocks
(or stubs), the then: block must contain only verifications.

6.3.5 Verifying noninteractions for multiple mocked classes

Now you know how to verify individual methods for any number of invocations. But
sometimes you want to cast a wider net, and control invocations at the class level
instead of the method level. The underscore character is flexible regarding its posi-
tion inside a verification statement. Consider the following listing.

def "Warehouse is queried for each product - strict"() {
 given: "a basket, a TV and a camera"
 Product tv = new Product(name:"bravia",price:1200,weight:18)
 Product camera = new Product(name:"panasonic",price:350,weight:2)
 Basket basket = new Basket()

 and: "a warehouse with limitless stock"
 WarehouseInventory inventory = Mock(WarehouseInventory)
 basket.setWarehouseInventory(inventory)

 when: "user checks out both products"
 basket.addProduct tv
 basket.addProduct camera
 boolean readyToShip = basket.canShipCompletely()

 then: "order can be shipped"
 readyToShip
 2 * inventory.isProductAvailable(_ , _) >> true
 1 * inventory.isEmpty() >> false
 0 * inventory._
}

Here you’ve written a strict unit test because it assumes that regardless of the number
of methods that exist in the inventory class, the basket class should call only
isProductAvailable() and isEmpty() and nothing else. Therefore, the last verifica-
tion line uses the underscore as a method matcher:

0 * inventory._

This line means, “I expect zero invocations for all other methods of the inventory
class.” Be careful when using this technique because it means that you know exactly
the interface between the class under test and the mock. If a new method is added in
the mock (in the production code) that’s used by the class under test, this Spock test
will instantly fail.

 If you have multiple mocks, you can write even stricter tests by placing the under-
score as a class name, as shown in the next listing.

Listing 6.18 Verifying interactions for all methods of a class

Setting expectations
for specific methods

Setting
ctations
all other
thods of
he class
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

180 CHAPTER 6 Mocking and stubbing

Und

nu
invo

def "Only warehouse is queried when checking shipping status"() {
 given: "a basket, a TV and a camera"
 Product tv = new Product(name:"bravia",price:1200,weight:18)
 Product camera = new Product(name:"panasonic",price:350,weight:2)
 Basket basket = new Basket()

 and: "a warehouse with limitless stock"
 WarehouseInventory inventory = Mock(WarehouseInventory)
 basket.setWarehouseInventory(inventory)
 ShippingCalculator shippingCalculator = Mock(ShippingCalculator)
 basket.setShippingCalculator(shippingCalculator)

 when: "user checks out both products"
 basket.addProduct tv
 basket.addProduct camera
 boolean readyToShip = basket.canShipCompletely()

 then: "order can be shipped"
 readyToShip
 2 * inventory.isProductAvailable(_ , _) >> true
 _ * inventory.isEmpty() >> false
 0 * _
}

In this code listing, the basket class is injected with two mocks (one for shipping costs
and one for the inventory). After running the test, you want to verify that only two spe-
cific methods were called on the inventory and that nothing was called for the ship-
ping cost service. Instead of manually declaring all other methods with zero
cardinality one by one, you use the underscore character in the class part of the verifi-
cation. In Spock, the line

0 * _

means, “I expect zero invocations for all other methods of all other classes when the
test runs.” Also notice that you don’t care how many times the isEmpty() method is
called, and you use the underscore operator in the cardinality:

_ * inventory.isEmpty() >> false

This line means, “I expect the isEmpty() method to be called any number of times,
and when it does, it should return false.”

Listing 6.19 Verifying noninteractions for all mocks

The many faces of the underscore character

As you may have noticed by now, the underscore character is a special matcher for
Spock tests. In the basic form of a mock verification, N * class.method(argument),
the underscore can be used to match arguments (listings 6.16, 6.17), methods (listing
6.18), classes, and even the cardinality N (listing 6.19). For all these cases, you don’t
care about the respective part of the verification.

Underscore matches
arguments.

erscore
matches
mber of
cations.

Underscore matches
mocked classes.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

181Mocks: verifying values returned from the class under test
6.3.6 Verifying types of arguments when a mocked method is called

I’ve shown how to verify specific arguments in mock invocations and how to say to
Spock that you don’t care about arguments (the underscore character). But between
these two extremes, you can verify several other attributes of arguments. One of the
most useful verifications is to make sure that the argument passed isn’t null. This can
be described naturally in Spock, as shown in the next listing.

def "Warehouse is queried for each product - null "() {
 given: "a basket, a TV and a camera"
 Product tv = new Product(name:"bravia",price:1200,weight:18)
 Product camera = new Product(name:"panasonic",price:350,weight:2)
 Basket basket = new Basket()

 and: "a warehouse with limitless stock"
 WarehouseInventory inventory = Mock(WarehouseInventory)
 basket.setWarehouseInventory(inventory)

 when: "user checks out both products"
 basket.addProduct tv
 basket.addProduct camera
 boolean readyToShip = basket.canShipCompletely()

 then: "order can be shipped"
 readyToShip
 2 * inventory.isProductAvailable(!null ,1) >> true
}

In this listing, you want to make sure that whatever argument is passed to the inven-
tory isn’t null (because the arguments should be names of products). For the second
argument, where you know exactly what will be used, you directly put in the value:

2 * inventory.isProductAvailable(!null ,1) >> true

This line means, “I expect that the method isProductAvailable() will be called
twice. The first argument can be anything apart from null, and the second argument
will always be 1. When that happens, the method will return true.”

 In unit tests with complex class hierarchies, you can verify the type of arguments as
well. The following listing illustrates this (for this trivial example, verifying the type of
arguments is probably overkill).

def "Warehouse is queried for each product - type "() {
 given: "a basket, a TV and a camera"
 Product tv = new Product(name:"bravia",price:1200,weight:18)
 Product camera = new Product(name:"panasonic",price:350,weight:2)
 Basket basket = new Basket()

Listing 6.20 Verifying that arguments aren’t null when a mocked method is called

Listing 6.21 Verifying the type of arguments

Creating a
Spock mock

Verifying that the first
argument isn’t null
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

182 CHAPTER 6 Mocking and stubbing

C
Spo
 and: "a warehouse with limitless stock"
 WarehouseInventory inventory = Mock(WarehouseInventory)
 basket.setWarehouseInventory(inventory)

 when: "user checks out both products"
 basket.addProduct tv
 basket.addProduct camera
 boolean readyToShip = basket.canShipCompletely()

 then: "order can be shipped"
 readyToShip
 2 * inventory.isProductAvailable(_ as String ,_ as Integer) >> true
}

Again you use the magic underscore character, this time combined with the as key-
word. Notice that a null argument will also fail the verification so the as/underscore
combination includes the null check.

6.3.7 Verifying arguments of method calls from mocked classes

Using the underscore character as an argument in your mock verifications means that
you don’t care about the argument at all. But what happens if your unit test is focused
on the arguments and you do care?

 In that case, my advice is to declare exactly what you expect. You’ve already seen
that with scalar values, you use them directly as arguments. The same thing happens
with full objects, as shown in the next listing.

def "vip status is correctly passed to credit card - simple"() {
 given: "a basket, a customer and a TV"
 Product tv = new Product(name:"bravia",price:1200,weight:18)
 Product camera = new Product(name:"panasonic",price:350,weight:2)
 BillableBasket basket = new BillableBasket()
 Customer customer = new
 Customer(name:"John",vip:false,creditCard:"testCard")

 and: "a credit card service"
 CreditCardProcessor creditCardSevice = Mock(CreditCardProcessor)
 basket.setCreditCardProcessor(creditCardSevice)

 when: "user checks out two products"
 basket.addProduct tv
 basket.addProduct camera
 basket.checkout(customer)

 then: "credit card is charged"
 1 * creditCardSevice.sale(1550, customer)
}

As you can see in this listing, there’s no special syntax for objects:

1 * creditCardSevice.sale(1550, customer)

Listing 6.22 Verifying exact arguments of a mocked method

Creating a
Spock mock

Verifying that the first
argument is always a

string and the second
always an integer

reating a
ck mock

Verifying that the second
argument is equal to a
specific object instance
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

183Mocks: verifying values returned from the class under test

C
Spo

Crea
Spo
This line means, “When the test ends, I expect the sale() method to be called exactly
once. Its first argument should be the number 1500, and its second argument should
be the customer instance.”

 If you want to verify part of an object instance and not the whole instance, you can
use Groovy closures in a similar way to stubs (as was shown in listing 6.8). The same
syntax applies to mocks, as the following listing shows.

def "vip status is correctly passed to credit card - vip"() {
 given: "a basket, a customer and a TV"
 Product tv = new Product(name:"bravia",price:1200,weight:18)
 Product camera = new Product(name:"panasonic",price:350,weight:2)
 BillableBasket basket = new BillableBasket()
 Customer customer = new
 Customer(name:"John",vip:false,creditCard:"testCard")

 and: "a credit card service"
 CreditCardProcessor creditCardSevice = Mock(CreditCardProcessor)
 basket.setCreditCardProcessor(creditCardSevice)

 when: "user checks out two products"
 basket.addProduct tv
 basket.addProduct camera
 basket.checkout(customer)

 then: "credit card is charged"
 1 * creditCardSevice.sale(1550, { client -> client.vip == false})
}

The last verification line in this listing checks only the vip field of the customer
object. The other two fields (name and creditCard) can be anything, and the test will
still pass. With the power of Groovy closures, you can check a mocked argument
against any expression you can think of.

def "vip status is correctly passed to credit card - full"() {
 given: "a basket, a customer and a TV"
 Product tv = new Product(name:"bravia",price:1200,weight:18)
 Product camera = new Product(name:"panasonic",price:350,weight:2)
 BillableBasket basket = new BillableBasket()
 Customer customer = new
 Customer(name:"John",vip:false,creditCard:"testCard")

 and: "a credit card service"
 CreditCardProcessor creditCardSevice = Mock(CreditCardProcessor)
 basket.setCreditCardProcessor(creditCardSevice)

 when: "user checks out two products"
 basket.addProduct tv

Listing 6.23 Verifying part of an object instance used as a mock argument

Listing 6.24 Using full Groovy closures for argument verification

reating a
ck mock

Verifying that the second
has a field called vip with

the value false

tion of a
ck mock
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

184 CHAPTER 6 Mocking and stubbing

expr
bot

a

 basket.addProduct camera
 basket.checkout(customer)

 then: "credit card is charged"
 1 * creditCardSevice.sale({amount -> amount ==
 basket.findOrderPrice()}, { client -> client.vip == false})
}

This listing uses two closures, one for each argument of the sale() method. As
before, the second closure checks a single field of an object (the vip field from the
customer class). The first closure makes its own calculation with a completely external
method, the findOrderPrice():

1 * creditCardSevice.sale({amount -> amount ==
 basket.findOrderPrice()}, { client -> client.vip == false})

The whole line means, “When this unit test is complete, I expect the sale method to
be called exactly once. It should have two arguments. The first argument should be
equal to the result of basket.findOrderPrice(). The second argument should be an
object instance with a vip field. The value of the vip field should be false.”

 If any facts of this sentence don’t stand, the Spock test will fail. All of them must be
correct for a successful test.

6.4 Putting it all together: credit card charging in two steps
All the examples shown so far illustrate various features of mocks and stubs. I’ll close
this chapter with a bigger example that combines most of the techniques shown so far
and is closer to what you’d write in a production application.

 If you look back at listing 6.14, you’ll see that the basket class also contains the
fullCheckout()method. This method does the following:

1 Checks the credit card of the customer. If the card is invalid or doesn’t have
enough funds, the method stops there.

2 If the credit card is OK, the price for the products is reserved from the credit
card. (This is called an authorization event in credit card terminology.)

3 The inventory is checked. If the products are in stock and can be shipped, the
amount from the card that was previously reserved is now transferred to the
account of the e-shop. (This is called a capturing event in credit card terminology.)

In listing 6.12, you can see
these two methods (for authori-
zation and capturing) in the
credit card processor class. Fig-
ure 6.4 is a diagram of what you
want to test.

Figure 6.4 Business requirements for
credit card charging

Custom
ession for
h mocked
rguments

Customer checks
out products

Credit card
is checked

Card does not
have money

Card has
money

Inventory
is checked

Products
are in stock

Credit card
is charged

No charge
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

185Putting it all together: credit card charging in two steps

Spo

M
cr

to b
As a starting point, the first scenario that you’ll test is the case where the card doesn’t
have enough money. The Spock test is shown in the next listing.

def "card has no funds"() {
 given: "a basket, a customer and some products"
 Product tv = new Product(name:"bravia",price:1200,weight:18)
 Product camera = new Product(name:"panasonic",price:350,weight:2)
 BillableBasket basket = new BillableBasket()
 Customer customer = new
 Customer(name:"John",vip:false,creditCard:"testCard")

 and: "a credit card service"
 CreditCardProcessor creditCardSevice = Mock(CreditCardProcessor)
 basket.setCreditCardProcessor(creditCardSevice)

 and: "a fully stocked warehouse"
 WarehouseInventory inventory = Stub(WarehouseInventory) {
 isProductAvailable(_ , _) >> true
 isEmpty() >> false
 }
 basket.setWarehouseInventory(inventory)

 when: "user checks out two products"
 basket.addProduct tv
 basket.addProduct camera
 boolean charged = basket.fullCheckout(customer)

 then: "nothing is charged if credit card does not have enough money"
 1 * creditCardSevice.authorize(1550, customer) >>
 CreditCardResult.NOT_ENOUGH_FUNDS
 !charged
 0 * _

}

The resulting code doesn’t have any surprises. Because you directly mock the credit
card processor to assume that the card doesn’t have enough money, the charging pro-
cess stops.

 Things get more interesting if you want to write a unit test for the full scenario,
where the card has money. The complicated part here is the two-step process between
the authorize and capture steps. The reason for this is that the response from the first
is a special token (assume that in this example it’s a single string). Then when the bas-
ket calls the capture step, it must pass the same token to the credit card processor.
This way, the credit card processor can link the two events together and distinguish
multiple capture events.

Listing 6.25 Using mocks and stubs in the same test

Create a
ck mock.

Stub the inventory
to be full.

Trigger the
tested action.

ock the
edit card
e invalid.

Verify that nothing
was charged.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

186 CHAPTER 6 Mocking and stubbing

M
cr

M
wa

Pass th
tok
bask
To further complicate things, assume also that the credit card processor wants the cur-
rent date prepended to the token for logistical reasons. Figure 6.5 shows a sample
conversation between the basket class and the credit card processor.

 The respective unit test is shown next.

def "happy path for credit card sale"() {
 given: "a basket, a customer and some products"
 Product tv = new Product(name:"bravia",price:1200,weight:18)
 Product camera = new Product(name:"panasonic",price:350,weight:2)
 BillableBasket basket = new BillableBasket()
 Customer customer = new
 Customer(name:"John",vip:false,creditCard:"testCard")

 and: "a credit card that has enough funds"
 CreditCardProcessor creditCardSevice = Mock(CreditCardProcessor)
 basket.setCreditCardProcessor(creditCardSevice)
 CreditCardResult sampleResult = CreditCardResult.OK
 sampleResult.setToken("sample");

 and: "a warehouse"
 WarehouseInventory inventory = Mock(WarehouseInventory)
 basket.setWarehouseInventory(inventory)

 when: "user checks out two products"
 basket.addProduct tv
 basket.addProduct camera
 boolean charged = basket.fullCheckout(customer)

 then: "credit card is checked"
 1 * creditCardSevice.authorize(1550, customer) >> sampleResult

Listing 6.26 Verifying a sequence of events with interconnected method calls

Electronic basket

1. Authorize (amount, customer)

OK - token: 45f89khg

2. Capture - token: 05/02/2015-45f89khg

OK

Credit card processor

Figure 6.5 Two steps of charging a
credit card with the same token

ock the
edit card

service.

Create a sample
credit card token.

ock the
rehouse.

Trigger the
tested action.

e sample
en to the
et class.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

187Putting it all together: credit card charging in two steps

inte
usin

ry

Ve
previ

re
b

 then: "inventory is checked"
 with(inventory) {
 2 * isProductAvailable(!null , 1) >> true
 _ * isEmpty() >> false
 }

 then: "credit card is charged"
 1 * creditCardSevice.capture({myToken -> myToken.endsWith("sample")},
 customer) >> CreditCardResult.OK
 charged
 0 * _
}

This listing demonstrates several key points. First, this time the warehouse inventory is
a mock instead of a stub because you want to verify the correct calling of its methods.
You also want to verify that it gets non-null arguments.

 Mocks and stubs support the with() Spock method that was introduced in chapter
4. You’ve used it to group the two interactions of the warehouse inventory.

 To verify that the basket class honors the token given back by the credit card pro-
cessor, you create your own dummy token (named sample) and pass it to the basket
when the authorization step happens. You can then verify that the token handed to
the capture event is the same. Because the basket also prepends the token with the
date (which is obviously different each time the test runs), you have to use the ends-
With() method in the Groovy closure that matches the token.

And there you have it! You’ve tested two credit card scenarios without charging a real
credit card and without calling the real credit card service, which might be slow to ini-
tialize. As an exercise,11 feel free to create more unit tests to cover these scenarios:

■ The card becomes invalid between the authorize and capture steps.
■ The authorize step succeeds, but the inventory doesn’t have the products in

stock.

Mocks and stubs are relevant only to the scenario being tested

If you look at listing 6.25, you’ll see that the warehouse is a stub. But in listing 6.26,
it’s a mock. It’s therefore possible to create stubs of a specific class in one unit test,
and mocks of the same class in another unit test, depending on your business needs.
Also, it’s possible to have Spock tests that use only stubs, tests that use only mocks,
and tests that use both depending on the case (as you’ll see if you look back at the
examples of this chapter). Use whatever you need according to the situation.

11 A possible solution can be found in the source code of the book at GitHub.

Group
ractions
g with()

Verify that the invento
is queried twice (once
for each product).

rify that the
ous token is
used by the
asket class.

Verify that the credit
card was charged.Ensure that no other method

from mocks was called.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

188 CHAPTER 6 Mocking and stubbing
6.5 Architecture considerations for effective mocking/stubbing
This chapter closes with some theory that isn’t strictly specific to Spock, but is essential
to effective unit tests that contain mocks and stubs.

6.5.1 Designing testable code that allows painless mocking

If after reading the examples in this chapter, you get the feeling that I was always lucky
that collaborator classes were so easily mocked and stubbed, you’re half correct. One
of the prerequisites of easy mocking is to have written your source code in a testable
manner. By that I mean

■ Code that’s injected with its dependencies (inversion of control)
■ No static classes/global state
■ No static fields
■ No singletons
■ No complex constructors
■ No service locators and hidden dependencies

Spock (and any other testing framework, for that matter) can’t help you if the produc-
tion code isn’t in a usable state. It helps to follow the test-driven-development para-
digm when you create Spock tests.

 Also note that for Java production code, Spock can’t mock static methods and/or
private methods on its own. This is done by design.12 Even though this might seem
like a limitation, you should see it as a motivation for writing testable code. For more
information, consult Test Driven by Lasse Koskela (Manning, 2007). The book talks
about JUnit, but the advice it gives on testable Java code also applies to Spock.

 If you really, really want to mock static/private methods, you need to use a frame-
work such as PowerMock (https://code.google.com/p/powermock/). You might
already have experience with it because Mockito also doesn’t support mocking of pri-
vate methods and needs PowerMock for this purpose. I don’t like the PowerMock solu-
tion (it uses a custom class loader and bytecode manipulation) and would use it only as
a last resort. Spock can be used together13 with PowerMock via the PowerMockRule
JUnit rule (https://code.google.com/p/powermock/wiki/PowerMockRule).

6.5.2 Understanding lenient vs. strict mocks

The underscore character is powerful in Spock, and as you’ve seen, it can be used on
a wide range of elements, from single arguments to full classes. But as with all things
in software engineering, a trade-off exists between strict tests (which explicitly specify
all interactions and arguments) and lenient tests (which rely heavily on the under-
score character and the default stubbing behavior of Spock).

12 Mockito also does not support mocking of static/private methods.
13 See https://github.com/kriegaex/Spock_PowerMock for an example.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

https://github.com/kriegaex/Spock_PowerMock
https://code.google.com/p/powermock/
https://code.google.com/p/powermock/wiki/PowerMockRule

189Summary
 Strict tests catch subtle bugs, but in the long run are hard to maintain, because
even the slightest change in external interfaces or business requirements will make
them break. Even adding a single method to a class that’s used in a mock will instantly
break any test that uses the 0 * _ line as a last statement.

 On the other hand, lenient tests won’t break often, but may miss some hard-to-
reproduce bugs that occur because of corner cases and strange combinations of
arguments.

 My advice is to use strict tests for the mission-critical parts of your application and
lenient tests for everything else. Following the Pareto principle, about 20% of your
tests should be strict and the rest (80%) should be lenient. As always, this suggestion
should only be a starting point for your own application and business needs.

6.6 Summary
■ Fake classes can be used in unit tests instead of real classes. They’re needed in

several cases, such as when the real implementations are slow or have severe
side effects.

■ Spock supports two kinds of fake classes: mocks and stubs. Stubs are fake classes
with preprogrammed behavior. Mocks are fake classes with preprogrammed
behavior that can also be queried at the end of the test for their interactions.

■ Spock can mock/stub both Java interfaces and concrete Java classes.
■ Canned responses in stubs are programmed with the right-shift operator: >>.
■ Preprogrammed responses can be differentiated according to the argument

method or the number of times a method was called.
■ The unsigned right-shift operator (>>>) can be used to stub sequential calls of

the same method with the same arguments.
■ The underscore character acts as a universal matcher in Spock when you don’t

care about the exact content of a call. It can be used to match arguments, meth-
ods, classes, or even the number of times a method was called.

■ By using Groovy closures, a stub can be instructed to throw exceptions, run cus-
tom statements, or perform any other side effects.

■ Groovy closures can also be used in stubs to create dynamic responses accord-
ing to the argument passed to the stubbed method.

■ It’s possible to mix the underscore operator, fixed arguments, and Groovy clo-
sures in the same stubbed method call.

■ Stubs/mocks can return other stubs/mocks. Recursive stub creation is possible
if legacy production code requires it.

■ In Spock, mocks are a superset of stubs, but for readability, you should use
mocks only when you want to verify the interaction with the class under test. For
fake objects that are used only for their responses, you should use stubs.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

190 CHAPTER 6 Mocking and stubbing
■ By default, the order of mock verifications inside a then: block doesn’t matter.
You should use multiple then: blocks if you care about the order of verifica-
tions. Each then: block will be evaluated in turn.

■ It’s possible to verify the number of times a method was called. Using zero as
cardinality means that you expect that a method was never called. Using the
underscore character means that you don’t care how many times it was called.

■ You can verify arguments of a mocked method to ensure that they weren’t null,
or that they had a specific type.

■ You can use Groovy closures as argument catchers to perform further valida-
tions on specific arguments of mocked methods.

■ As with JUnit/Mockito, Spock is more easily applied to Java code that’s
designed to be testable in the first place.

■ With Java classes, Spock can’t mock private methods and static methods/
objects. You should refactor your Java code first before writing Spock tests, or
use PowerMock if you’re desperate.

■ Care must be exercised with the underscore character. It can result in lenient
tests that let subtle bugs slip through.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

Part 3

Spock in the Enterprise

The last part of the book examines Spock in the context of a large enter-
prise application. Enterprise applications sometimes have unique requirements
in terms of their complexity and the breadth of features they must offer. Spock is
ready for the Enterprise, as it comes with several features that come in handy in
large and complicated unit tests.

 Chapter 7 examines the use of Spock in the full testing lifecycle of an enter-
prise application. Spock can cover trivial plain unit tests, larger integration tests,
and even functional tests. Several examples (mostly with Spring) show that
Spock allows you to reuse your favorite Java testing tools with zero additional
effort. At the same time, Spock can employ Groovy testing libraries, which may
be more appropriate in your specific application.

 Chapter 8 builds upon the knowledge of all previous chapters by describing
corner cases that need special attention in your Enterprise Spock tests. It
describes several additional Spock annotations that enable/disable the running
of a test in a static or dynamic way and then shows you how to refactor large
Spock tests with helper methods. The chapter finishes with a demonstration of
Spock spies, a feature that I explicitly advise you not to use.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

192 CHAPTER
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

Integration and functional
testing with Spock
At this point in the book, you probably want to start writing Spock tests for your
own application. If you’re a single developer or your application is fairly small and
self-contained (for example, a standalone utility), then the previous chapters have
covered the most important Spock features you’ll need. If, on the other hand,
you’re part of a bigger team that works in large enterprise applications with an
existing build infrastructure (automatic builds, test environments, code quality,
and so on), you might be wondering how Spock fits the existing paradigm and
practices already used in your organization.

 In this chapter, you’ll see how Spock can be used for the full testing lifecycle of
an enterprise application that includes multiple layers of testing procedures running

This chapter covers
■ Understanding the categories of unit tests in an

enterprise application
■ Writing integration tests for the Spring framework
■ Testing REST endpoints with Spock
■ Performing web-based tests with Spock and Geb
■ Using Spock as part of the build process
193

Licensed to Stephanie Bernal <nordicka.n@gmail.com>

194 CHAPTER 7 Integration and functional testing with Spock
either automatically (after each code change) or on demand as part of a release. Spock
is suitable for both integration tests (which cover multiple classes/modules and don’t
focus on a single class) and functional tests (which cover end-to-end functionality and
view the whole system as a single entity instead of individual classes). Like the previous
chapter, this one briefly covers the theory behind these types of tests.

 Last but not least, a popular requirement for enterprise testing is examining web
applications. You’ll see how Spock can be used in conjunction with Geb
(www.gebish.org), another Groovy library that makes web testing easy.

7.1 Unit tests vs. integration tests vs. functional tests
Let’s start with a brief review of the types of tests useful to an enterprise application.
This knowledge isn’t specific to Spock, so if you already know the theory,1 feel free to
skip ahead to the Spock implementation.

 Each time you want to create a new unit test, you have to decide on its scope. An
automated test can focus on a single class, multiple classes, a single module, or even
the whole system. The breadth of the tested area will affect several factors of your unit
test, from the time it takes to complete (the more you’re trying to test, the bigger the
unit test execution) to the readability and effort it takes to write it (a unit test that
needs to set up several modules needs more preparation).

 At one end of the spectrum, you have “pure” unit tests that focus on a single class.
These are easy to write, run quickly, and depend only on the production code. At the
opposite end are functional tests (also called acceptance tests) that examine the system
as a whole, emulating user behavior and even interacting with the graphical user
interface (GUI). A functional test sends a request to the system and expects a response
without any other knowledge of the inner workings of the system.

 In the middle of these extremes, tests can examine either a code module or a code
service. These are the integration tests (because they examine how individually tested
classes integrate into modules). Figure 7.1 shows the scope examined by these catego-
ries of tests.

 The example in this figure is the e-shop application mentioned multiple times in
the previous chapters. The image shows the following test types:

■ Unit tests always examine a single class. All other classes are mocked/stubbed so
that they don’t interfere with the result of the test. A unit test, for example,
would verify that the basket class correctly calculates the weight of products it
contains.

■ Integration tests focus on multiple classes. Mocks/stubs are rarely used, as you’re
interested in both the code and the way communication happens between mod-
ules. An integration test, for example, would verify the communication between
the warehouse inventory (which is backed by a database) and the products

1 For more information, see Test Driven by Lasse Koskela (Manning, 2007).
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

195Unit tests vs. integration tests vs. functional tests
contained in the basket. When the customer attempts to check out, the basket
will show which products are in stock and which aren’t (after querying the
inventory, which queries the database).

■ Functional tests assume that the whole system is a black box. They test end-to-end
interactions starting from the user interface (or the network API), and pass
through the whole system. Functional testing usually requires a clone or dupli-
cate of the real system. A functional test, for example, would be an automated
test that opens a browser on its own, selects products by emulating the clicking
of buttons on the web pages, checks out, enters a credit card, and expects to
“see” onscreen a tracking number of the order shipped.

The distinction between these three categories isn’t always clear. After all, concepts
such as module may mean different things to different people. Don’t get consumed by
terminology.

7.1.1 Characteristics of the test categories

A well-tested application needs tests from all three categories. I sometimes imagine
that a well-designed software product is like a well-designed car. If you’re a car manu-
facturer, you need to test the individual screws, bolts, and frames of a car (unit tests);

Functional test

Unit test

Customers
Web

templates Billing

Persistence

Database

Integration test

BasketInventory Inventory
mock

Figure 7.1 Unit tests focus on a single class, integration tests cover multiple modules, and
functional tests cover end-to-end testing from the web interface to the database.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

196 CHAPTER 7 Integration and functional testing with Spock
test how these are assembled (integration tests); and in the end, perform tests on the
final product by driving it in a controlled environment2 (functional tests).

 It would be unrealistic to release a car without making sure that all screws are cor-
rectly assembled, and it would also be foolish to release a car without testing it as a
whole on the road. I’m still puzzled when I see software organizations that either have
only functional tests or only integration tests, and at the same time don’t understand
why more bugs than expected are found in production.

 The challenge of these three categories of tests is that they have different require-
ments and need different accommodations in the software lifecycle of a project.
Table 7.1 briefly outlines the differences among them.

2 Or perform crash tests with dummies, which is much more fun.

Table 7.1 Test categories in an enterprise application must be handled differently.

Unit test Integration test Functional test

Scope of test A single Java
class

A single module or multi-
ple classes

The whole system

Focus of test Correctness of
Java class

Class communication,
transactions, logging,
security, and more

End-to-end user experience

Result depends on Java code Java code, filesystem,
network, DB, other
systems

Java code, filesystem, net-
work, DB, other systems,
GUI, API endpoints

Stability Very stable May break from environ-
ment changes

Very brittle (a trivial GUI
change may break it)

Failed test means A regression Either a regression or an
environment change

A regression, an environ-
ment change, a GUI change

Effort required to set up Minimal Medium (may need
external systems)

High (needs a running rep-
lica system)

Effort required to fix Minimal Medium (multiple
classes may have bugs)

Medium/high (bug can be in
any layer of the application)

Tools required A test framework Test framework, a con-
tainer, a DB, and exter-
nal services

Specialized and sometimes
proprietary external tools, a
staging system

Mocking/stubbing Used when
needed

Rarely used if ever Rarely used if ever

Time to run a single test Milliseconds Seconds Seconds or minutes

Time to run all tests of
that type

Five minutes
max

Can be hours Can be hours
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

197Unit tests vs. integration tests vs. functional tests
Table 7.1 is intended as a rough guide and is geared toward large enterprise projects.3

Your project might be different, but the general principles still apply. You can write
pure unit tests with Spock with no additional external library. But if you need to write
a test that launches a web browser and starts pressing buttons in an automated man-
ner, Spock isn’t enough on its own.

7.1.2 The testing pyramid

So far, all tests you’ve seen in the previous chapters are mainly unit tests (pure tests).
You might be wondering why I devoted three whole chapters (chapters 4, 5, and 6) for
basic unit tests and left only a single chapter for both integration and functional tests.

 The reason is that although all three cate-
gories of tests are essential, pure unit tests
have a larger weight. This is best illustrated by
a testing pyramid4 that shows the percentage
of tests from each category that compose your
whole testing suite, as shown in figure 7.2.

 Pure unit tests are your first line of
defense. They’re the foundation that other
tests build upon. It makes no sense to start cre-
ating complex integration tests if you’re not
sure about the quality of the individual Java
classes that compose them.

 Only after you have enough unit tests can
you start writing integration tests. Integration
tests should be focused on testing things that
pure unit tests can’t detect. Typical examples
are transactions, security, and other cross-cut-
ting concerns in your application. Integration tests are often used to ensure correct
functionality between the prior code base and new modules added to a project.

Tests are run After every com-
mit automatically

Automatically at various
scheduled intervals

Automatically/manually
before a release

People involved Developers Developers, architects Developers, architects, tes-
ters, analysts, customer

3 Think of a code base of 500K lines of code, a team of 20 people, a dedicated QA department, requirements
that resemble a small book when printed—you get the picture.

4 See “Just Say No to More End-to-End Tests” by Mike Wacker on the Google Testing Blog for more details
(http://googletesting.blogspot.co.uk/2015/04/just-say-no-to-more-end-to-end-tests.html).

Table 7.1 Test categories in an enterprise application must be handled differently.

Unit test Integration test Functional test

Integration tests—20%

Functional tests—10%

Unit tests—70%

Figure 7.2 Breakdown of total test count
for each test category in a large enterprise
application: the testing pyramid
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

http://googletesting.blogspot.co.uk/2015/04/just-say-no-to-more-end-to-end-tests.html

198 CHAPTER 7 Integration and functional testing with Spock
 Finally, when you’re happy with the number of integration tests, it’s time to create
functional tests. These view the whole system as a black box and should be used as a
way to catch serious runtime or graphical errors that slip through the rest of the tests.

7.1.3 Spock support for integration and functional testing

Unfortunately, unlike pure unit tests (which can be covered using just Spock), integra-
tion tests require a different infrastructure depending on the Java framework you use.
Given the number of Java frameworks present, covering all possible cases would be
difficult.

 This section covers integration testing with Spock and Spring (https://spring.io/)
and gives you pointers for Java EE5 and Guice (https://github.com/google/guice). I
chose Spring because of its popularity at the time of this writing. This section also
shows how to test back-end applications that use REST services (powered by HTTP/
JSON). I assume that your application has a web interface and explain that you can use
Spock and Geb together to automate the web browser for effective functional tests.
Finally, I complete the puzzle by covering Maven configuration and some advice on
the build server setup.

 If you’re writing an exotic Java application that doesn’t match this profile, I apolo-
gize in advance. You need to do some research on your own. Either a Spock extension
already exists for what you need or you can use Spock’s compatibility with JUnit and
attempt to use a tool from the JUnit world.

Common pitfalls with the pyramid of unit tests

If you look back at the pyramid, you can imagine that any other shape is an antipattern.
A project that has no unit tests is clearly missing the foundations of the pyramid.a A
project that has too many functional tests is also problematic (the pyramid will fall
under its own weight).

a For more information on the test pyramid, see http://martinfowler.com/bliki/TestPyramid.html.

5 Java EE can be tested with the help of Arquillian. See http://arquillian.org/.

The selection of examples in this chapter is indicative of Spock capabilities

Covering integration testing for all kinds of Java applications in a single chapter would
be impossible. I’d need a series of books for that. I know that everybody has a favorite
testing tool or way to do integration testing, and I can’t cover them all. This chapter
covers mainly Spring applications because they seem to be more popular and Spock
has built-in support for them. But I’ll give you helpful pointers on what to do if your
application isn’t based on Spring. The main theme of the chapter is that in Spock you
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

http://arquillian.org/
http://martinfowler.com/bliki/TestPyramid.html
https://spring.io/
https://github.com/google/guice

199Integration testing with Spock
7.1.4 Source code organization of the examples

Unlike other chapters,
the source code for this
chapter is organized into
three distinct projects, as
shown in figure 7.3.

 Each project is a mini
application on its own.
Showing all source files
in the book as code list-
ings would be unmanageable. Instead, I focus on only important classes, so feel free to
consult the GitHub code at https://github.com/kkapelon/java-testing-with-spock/
tree/master/chapter7 while reading the book. The projects were created strictly for
illustration purposes, so take notice of the Spock tests instead of the “production” code.

7.2 Integration testing with Spock
In chapter 6, you saw various techniques used to mock collaborator classes so that only
the class under test affects the outcome of the tests. In some cases, however, you don’t
want to mock collaborators but want to test multiple real classes together.

 An integration test spans multiple Java classes (instead of just one) and examines
the communication among them. Common scenarios that need integration tests are
database mappings, security constraints, communication with external systems, and
any other cases where testing is focused on a module rather than a single class.

7.2.1 Testing a Spring application

To start, you’ll look at a stand-
alone application powered by
a Swing user interface that
manages the warehouse
inventory of an e-shop (see
figure 7.4).

Figure 7.4 A simple database
application with a Swing user interface

(continued)

can use your favorite Java testing libraries and learn new tricks with Groovy-based test-
ing utilities. The testing tools I show here are my personal selection. I tried to find
simple examples that anybody can understand. All the examples are contrived. If you
want to learn more about integration testing for Java applications in general, you should
consult books that focus on the specific technology of your application.

REST testing

Web testing

Integration testing

Figure 7.3 Source code contains three projects
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

https://github.com/kkapelon/java-testing-with-spock/tree/master/chapter7
https://github.com/kkapelon/java-testing-with-spock/tree/master/chapter7

200 CHAPTER 7 Integration and functional testing with Spock

Wirin

produc
The application is based on the Spring
framework and saves all its data in a JPA/
Hibernate database, which in this case is an
HSQLDB6 file. The design of the applica-
tion is straightforward. In the middle is the
Spring dependency injection container,
and all other classes revolve around it, as
shown in figure 7.5.

 The Spring context that binds all other
classes is an XML file defined in src/main/
resources/spring-context.xml. You want to
write a Spock test that examines the Hiber-
nate mappings for the Product class. To
achieve that, you need to test the whole
chain of database loading and saving. The
following classes should be tested:

■ The ProductLoader class, which is the DAO
■ The JPA entity manager that manages database mappings
■ The Datasource that provides access to the real database.

The good news is that Spock already contains a Spring extension that instantly recog-
nizes the @ContextConfiguration7 annotation provided by the Spring test facilities,
as shown in the following listing.

@ContextConfiguration(locations = "classpath:spring-context.xml")
class RealDatabaseSpec extends spock.lang.Specification{

 @Autowired
 ProductLoader productLoader

 @Sql("clear-db.sql")
 def "Testing hibernate mapping of product class"() {
 given: "the creation of a new product"
 productLoader.createDefaultProduct()

 when: "we read back that product"
 List<Product> allProducts = productLoader.getAllProducts();

 then: "it should be present in the db"
 allProducts.size() == 1

 and: "it should start with zero quantity"
 allProducts[0].getStock() ==0
 }
}

6 See the HyperSQL website at http://hsqldb.org/ for more information on HSQLDB.
7 And the @SpringApplicationConfiguration annotation from Spring Boot.

Listing 7.1 Access Spring context from a Spock test

DataSource

Spring

MainWindow

EntityManager

ProductLoader

HSQLDB
database

Figure 7.5 The Spring context initializes all
Java classes.

Marking the test with the Spring
ContextConfiguration annotation

g a Spring
bean as in

normal
tion code Spring facility to

initialize a database

Saves something
to the database

Reads back again
from the database

Verifies database read
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

http://hsqldb.org/

201Integration testing with Spock
In this listing, you can see that all testing facilities and annotations are already offered
by Spring. Spock automatically understands that this file uses a Spring context and
allows you to obtain and use Spring beans (in this case, ProductLoader) as in normal
Java code.

 The important line here is the @ContextConfiguration annotation because it’s
used by Spock to understand that this is a Spring-based integration test. Notice also that
you use the Spring @Sql annotation, which allows you to run an SQL file before the test
runs. This is already offered by Spring and works as expected in the Spock test.

 The resulting test is an integration test, because the real database is initialized, and
a product is saved on it and then read back. Nothing is mocked here, so if your data-
base is slow, this test will also run slowly.

A nice facility offered by Spring is the automatic rollback of database changes during a
unit test, as shown in the following listing. This is an effective way to keep your unit
tests completely independent from one another. Activating this behavior is (unsurpris-
ingly) done by using standard Spring facilities that apply automatically, even in the
case of a Spock test.

@ContextConfiguration(locations = "classpath:spring-context.xml")
@Transactional
class RealDatabaseSpec extends spock.lang.Specification{

 @Autowired
 ProductLoader productLoader

 @Rollback
 @Sql("clear-db.sql")
 def "Testing hibernate mapping of product class"() {
 [...code redacted for brevity...]
 }
}

The test code in this listing is exactly the same as in listing 7.1. I have only added two
extra Spring annotations. The @Transactional annotation notifies Spring that this test
will use database transactions. The @Rollback annotation instructs Spring to revert8 all
database changes performed inside the Spock feature method after the test finishes.

Options for Spring testing

The Spring framework contains a gazillion options when it comes to testing. Explaining
them all is outside the scope of this book. You should consult the official Spring doc-
umentation (https://spring.io/docs). This chapter presents some techniques that
prove that Spock and Spring play well together.

Listing 7.2 Rolling back database changes automatically

8 The default behavior by Spring is to revert all transactions. I show the @Rollback annotation for emphasis
only.

Making this test
honor transactions

Database changes
will be reverted once
the test finishes.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

https://spring.io/docs

202 CHAPTER 7 Integration and functional testing with Spock
 Even if your Spock test deletes or changes data in the database, these changes
won’t be persisted at the end of the test suite. Again, this capability is offered by
Spring, and Spock is completely oblivious to it.

 In summary, Spock support for Spring tests is as easy as marking a test with the
Spring test annotations. If you’ve written JUnit tests by using SpringJUnit4Class-
Runner, you’ll feel right at home.

7.2.2 Narrowing down the Spring context inside Spock tests

If you’ve written Spring integration tests before, you should have noticed two serious
flaws of the Spock tests shown in listings 7.1 and 7.2. Both tests use the same Spring
context as the production code. The two flaws are as follows:

1 Tests use the same database as production code. This isn’t desirable and some-
times not even possible because of security constraints.

2 The Spring context initializes all Java classes even though not all of them are
used in the Spock test.

For example, in the Swing application, the Spock test also creates the Swing class for
the GUI even though you never test the GUI. The Spock tests shown in listings 7.1 and
7.2 might not run easily in a headless machine (and build servers are typically head-
less machines).

 The recommended way to solve these issues is to use a different Spring context for
the tests. The production context contains all classes of the application, and the test
context contains a reduced set of the classes tested. A second XML file is created, as
shown in figure 7.6.

 With the reduced context, you’re free to redefine the beans that are active during
the Spock test. Two common techniques are replacing the real database with a memory-
based one and removing beans that aren’t needed for the test. If you look at the con-
tents of the reduced-text context file, you’ll see that I’ve removed the GUI class and
replaced the file-based datasource with an in-memory H2 DB9 with the following line:

<jdbc:embedded-database id="dataSource" type="H2"/>

9 You can find more information about the H2 database at www.h2database.com/html/main.html.

Real context

Test context
Figure 7.6 Creating a second
Spring context just for tests
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

www.h2database.com/html/main.html

203Integration testing with Spock

Da
in-
The in-memory database is much faster than a real database, but it works for only
small datasets (you can’t easily use it as a clone of a real database). Because unit tests
use specific datasets (small in size) and also need to run fast, an in-memory database is
a good candidate for DB testing.

 The context for the Spock test is now simplified, as shown in figure 7.7.
 To run the test, you inform Spring of the alternative context file. Spock automati-

cally picks up the change, as shown in the following listing.

@ContextConfiguration(locations = "classpath:reduced-test-context.xml")
@Transactional
class DummyDatabaseSpec extends spock.lang.Specification{

 @Autowired
 ProductLoader productLoader

 def "Testing hibernate mapping of product class - mem db"() {
 given: "the creation of a new product"
 productLoader.createDefaultProduct()

 when: "we read back that product"
 List<Product> allProducts = productLoader.getAllProducts();

 then: "it should be present in the db"
 allProducts.size() == 1

 and: "it should start with zero quantity"
 allProducts[0].stock ==0
 }
}

You can find the reduced Spring context at GitHub.10 Because this test runs with an
in-memory database, it’s much faster than the original test shown in listing 7.2. Also

Listing 7.3 Using a reduced Spring context for unit testing

10 https://github.com/kkapelon/java-testing-with-spock/blob/master/chapter7/spring-standalone-swing/
src/test/resources/reduced-test-context.xml

DataSource

Test
Spring
context

EntityManager

ProductLoader

H2 in-memory
database

Figure 7.7 Spring context for tests uses an
in-memory database and no GUI classes.

Defining an
alternative

Spring context

ta is written to an
memory database.

Data is fetched from
an in-memory

database, making
the test fast.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

https://github.com/kkapelon/java-testing-with-spock/blob/master/chapter7/spring-standalone-swing/src/test/resources/reduced-test-context.xml
https://github.com/kkapelon/java-testing-with-spock/blob/master/chapter7/spring-standalone-swing/src/test/resources/reduced-test-context.xml

204 CHAPTER 7 Integration and functional testing with Spock
you removed the GUI class from the context, so this unit test can run in any Unix/
Linux system in a shell environment (the typical case for build servers).

 You need to examine your own application and decide what you’ll discard/replace
in the test context. A good starting point is to remove all beans that aren’t used in
your tests.

7.2.3 Directly accessing the database with Groovy SQL

At this point, you’ve seen that a Spock test has access to Spring beans without any spe-
cial configuration,11 and that you can use common Spring features as testing aids.

 The additional advantage of Spock tests is that you also have all Groovy tools and
libraries at your disposal. I introduced you to some essential Groovy facilities back in
chapter 2, but you should spend some extra time exploring the full Groovy documen-
tation to see what’s available to help you while writing Spock tests for your applica-
tion needs.

 A handy Groovy feature not mentioned in chapter 2 (because it’s mainly a nice-to-
have feature) is the Groovy SQL interface.12 The Groovy SQL class is a thin abstraction
over JDBC that allows you to access a database in a convenient way. You can think of it
as a Spring JDBC template on steroids.

 Let’s assume that you want to verify that the DAO of the e-shop brings back all
products in alphabetical order. You can initialize your database by using Groovy SQL,
as shown in the next listing.

@ContextConfiguration(locations = "classpath:reduced-test-context.xml")
class DummyDatabaseGroovySqlWriteSpec extends spock.lang.Specification{
 @Autowired
 DataSource dataSource

 @Autowired
 ProductLoader productLoader

 def "Testing ordering of products"() {
 given: "the creation of 3 new products"
 Sql sql = new Sql(dataSource)
 sql.execute("DELETE FROM PRODUCT")
 sql.execute("INSERT INTO PRODUCT (id,name,price, weight,stock)
 VALUES (1, 'samsung',400,1,45);")
 sql.execute("INSERT INTO PRODUCT (id,name,price, weight,stock)
 VALUES (2, 'bravia',1200,3,2);")
 sql.execute("INSERT INTO PRODUCT (id,name,price, weight,stock)
 VALUES (3, 'canon',500,5,23);")

11 JUnit tests need the special SpringJUnit4ClassRunner in order to access Spring beans.
12 The takeaway of this section is that you can easily use Groovy libraries to do what you want. Groovy SQL is used

as an example. Details of the Groovy SQL interface are provided at http://docs.groovy-lang.org/latest/html/
api/groovy/sql/Sql.html.

Listing 7.4 Using Groovy SQL to prepare the DB in a Spock test

Getting the underlying
datasource from Spring

Groovy SQL creation over
an existing datasource

Clears the DB

Inserts data directly
on the database
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

http://docs.groovy-lang.org/latest/html/api/groovy/sql/Sql.html
http://docs.groovy-lang.org/latest/html/api/groovy/sql/Sql.html

205Integration testing with Spock

pa
SQ

 when: "we read back the products"
 List<Product> allProducts = productLoader.getAllProducts();

 then: "they should be ordered by name"
 allProducts.size() == 3
 allProducts[0].name =="bravia"
 allProducts[1].name =="canon"
 allProducts[2].name =="samsung"

 cleanup: "remove inserted data"
 sql.execute("DELETE FROM PRODUCT")
 sql.close()

 }

}

The Groovy SQL interface is a powerful feature. It supports all SQL statements you’d
expect (schema creations/data writing/data querying), and explaining all its capabili-
ties is beyond the scope of this book. It can be used both in production code and in
Spock tests.

 I tend to use it when I want to do something strange on the DB (perhaps re-create
an error condition) that’s normally not possible via the DAOs of the application. Be
careful when using it in your Spock tests, because as you’ve seen in listing 7.4, it gets
direct access to the database, so it acts outside the caches of JPA/Hibernate.

 Despite these shortcomings, it’s a natural Groovy way to access the DB, and you’ll
find its code compact and comfortable. The last example can be further improved by
extracting the common SQL statement in its own string, as shown in the next listing.

def "Testing ordering of products - improved"() {
 given: "the creation of 3 new products"
 Sql sql = new Sql(dataSource)
 sql.execute("DELETE FROM PRODUCT")
 String insertProduct = "INSERT INTO PRODUCT (id,name,price,
 weight,stock) VALUES (?, ?,?,?,?);"
 sql.execute(insertProduct,[1, 'samsung',400,1,45])
 sql.execute(insertProduct,[2, 'bravia',1200,3,2])
 sql.execute(insertProduct,[3, 'canon',500,5,23])

 when: "we read back the products"
 List<Product> allProducts = productLoader.getAllProducts();

 then: "they should be ordered by name"
 allProducts.size() == 3
 allProducts[0].name =="bravia"
 allProducts[1].name =="canon"
 allProducts[2].name =="samsung"

 cleanup: "remove inserted data"
 sql.execute("DELETE FROM PRODUCT")
 sql.close()
}

Listing 7.5 Using Groovy SQL to prepare the DB in a Spock test—improved

Clean up so that other
tests are unaffected.Always a good

practice

Creates Groovy SQL over
an existing data source

Defines a
rameterized
L statement

Runs the same SQL statement
with different parameters
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

206 CHAPTER 7 Integration and functional testing with Spock

Crea
c

A final note regarding Groovy SQL is that if you use it in multiple test methods, it’s
best to make it a @Shared field so that it’s created only once. Otherwise, performance
of your unit tests will suffer.

7.2.4 Integration testing with other containers (Java EE and Guice)

The example application in the previous paragraph was based on the Spring con-
tainer because the Spring framework is mature and popular among Java developers. If
you’re not using Spring, chances are that your application is based on Java EE. In that
case, the respective facilities offered by Spring in integration tests can be replicated by
using Arquillian, a test framework for Java EE applications that acts as a testing con-
tainer and allows access to EJBs, CDI injection,13 and other enterprise services.

 Arquillian (http://arquillian.org/) natively supports JUnit tests, but for Spock
tests, you need the Spock-Arquillian extension (https://github.com/arquillian/
arquillian-testrunner-spock). The extension has its own repository and a different life-
cycle than Spock releases. It works by creating a special runner that brings the Arquil-
lian facilities inside the Spock test.

 Apart from Spring, the core Spock distribution also includes support for the Guice
dependency injection framework (https://github.com/google/guice). In a similar
manner, it allows you to access Guice services/beans inside the Spock test.

 If the dependency injection framework you use is something else (other than
Spring, Guice, and Java CDI), and there isn’t a Spock extension for that by the time
you’re reading this book, you have two choices:

■ Manually initialize and inject your services in the Spock setupSpec() method.14

■ Find a way to initialize the DI container programmatically inside the Spock test.

The first option isn’t practical because you have to write a lot of boilerplate code that’s
usually not needed, going against the mentality of writing Spock tests in the first place
(compact and readable tests).

 The second way depends on the capabilities of the container you use and whether
it supports declarative or programmatic configuration. As an example, assume that
the Spock-Spring extension didn’t exist. The Spring container can be still created pro-
grammatically, as shown in the next listing.

class ManualInjectionSpec extends spock.lang.Specification{

 def "Testing hibernate mapping of product class - mem db"() {
 given: "a product DAO"
 ApplicationContext ctx = new
 ClassPathXmlApplicationContext("reduced-test-context.xml");
 ProductLoader productLoader =
 ctx.getBean(ProductLoader.class)

13 The Java spec for dependency injection.
14 You can find the code in ManualInjectionSpec in GitHub (the second test method).

Listing 7.6 Manual Spring context creation

tes a Spring
ontext from
an XML file

Manually initializes
a Spring bean
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

http://arquillian.org/
https://github.com/arquillian/arquillian-testrunner-spock
https://github.com/arquillian/arquillian-testrunner-spock
https://github.com/google/guice

207Functional testing of REST services with Spock
 when: "we read products from the DB"
 List<Product> allProducts = productLoader.getAllProducts();

 then: "the db is empty"
 allProducts.size() == 0

 }
}

This Spock test still has access to the Spring context because it creates one manually.
Notice the lack of any extra annotations in this listing. If your dependency injection
framework supports programmatic initialization, you can still write Spock integration
tests without needing a special extension.

7.3 Functional testing of REST services with Spock
Moving up in the testing pyramid, you leave integration tests behind and reach func-
tional tests. Functional tests, depicted in figure 7.8, view the whole system as a black
box (in contrast with integration tests that deal with internal modules).

For non-interactive systems (those with no user-visible component), functional testing
involves the testing of the services they provide to the outside world. In practice, this
usually means testing the HTTP/REST endpoints of the back-end modules.

 REST services use JSON or XML for the transport format. These examples use JSON.

7.3.1 Working with a simple REST service

A REST service is based on HTTP and a predefined message format (typically JSON or
XML) and is implementation-agnostic. Even though the application in this example is
a Spring-based one, it doesn’t matter to Spock. The application doesn’t even have to
be a Java one. You can use Spock if you want to test the REST service of a Python or
Ruby application.

 The example application is the REST API for the warehouse management example,
as already discussed in the previous sections. Table 7.2 provides an overview of the
endpoint and operations it supports (all responses are in JSON format).

Uses the Spring
bean as before

Expected response

Test fails if these
are different.

Actual response

Live system
(replica of production)

Sample request
JSON

JSON

Figure 7.8 A functional test sends a request and expects a certain response.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

208 CHAPTER 7 Integration and functional testing with Spock

t

Perf

stat

Like all applications shown so far, this back-end application was created for illustra-
tion purposes. The application uses Spring MVC for the implementation, but this is
completely irrelevant as far as functional tests are concerned. It could be imple-
mented in any other framework or even programming language, as long as it accepts
JSON messages over HTTP endpoints.

7.3.2 Testing REST services by using Java libraries

Writing a Spock test for REST services is straightforward. You can use any REST client
library that you’re already familiar with. Many are available in the Java world, and at
least for Spock tests, you should choose the one that you feel is more readable and
compact.15

 As a starting example, I’ve selected the Spring RestTemplate.16 The first test checks
the /status endpoint (which returns a single string and not JSON), as shown in the
next listing.

def "Simple status checker"() {
 when: "a rest call is performed to the status page"
 RestTemplate restTemplate = new RestTemplate()
 String status = restTemplate.getForObject("http://localhost:8080/rest-
 service-example/status", String.class)

 then: "the correct message is expected"
 status == "Up and Running"
}

The takeaway from this trivial example is that because of Groovy/Java compatibility,
you can use any Java REST client library you already use in your JUnit tests. Spock can
use it without any extra modifications. It’s that simple!

Table 7.2 HTTP endpoints of example application

Endpoint GET POST PUT DELETE

/status Returns a success mes-
sage (“up and running”)

- -

/products Lists all products Creates a
default product

- Deletes all
products

/products/{id} Returns a specific product - - -

/products/{id}/name - - Renames a
product

-

15 Such as RESTEasy (http://resteasy.jboss.org/), Jersey (https://jersey.java.net/), or Restlet (http://restlet
.com/).

16 See a tutorial on calling REST services from Spring at https://spring.io/guides/gs/consuming-rest/.

Listing 7.7 Testing REST services with Spock and Spring RestTemplate

Creates a Spring REST clien

orms a GET
call on the /
us endpoint

Examines the response
of the REST call
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

http://resteasy.jboss.org/
https://jersey.java.net/
http://restlet.com/
http://restlet.com/
https://spring.io/guides/gs/consuming-rest/

209Functional testing of REST services with Spock

Perf

pro
7.3.3 Using the @Stepwise annotation to run tests in order

Now you’re ready to create additional tests for the business endpoints of your applica-
tion. The next listing provides the whole Spock specification.

@Stepwise
class SpringRestSpec extends Specification {

 def "Simple status checker"() {
 when: "a rest call is performed to the status page"
 RestTemplate restTemplate = new RestTemplate()
 String status =
 restTemplate.getForObject("http://localhost:8080/rest-service-
 example/status", String.class)

 then: "the correct message is expected"
 status == "Up and Running"
 }

 def "Cleaning all products"() {
 given: "a rest call is performed that deletes everything"
 RestTemplate restTemplate = new RestTemplate()
 restTemplate.delete("http://localhost:8080/rest-service-
 example/products")

 when: "a product list is requested"
 List<Product> products =
 restTemplate.getForObject("http://localhost:8080/rest-
 service-example/products", List.class)

 then: "it should be empty"
 products.size() == 0
 }

 def "Creating a product"() {
 given: "a rest template"
 RestTemplate restTemplate = new RestTemplate()

 when: "a new product is created"
 Product product =
 restTemplate.postForObject("http://localhost:8080/rest-
 service-example/products","unused",Product.class)

 and: "product list is requested again"
 List<Product> products =
 restTemplate.getForObject("http://localhost:8080/rest-
 service-example/products", List.class)

 then: "it should have default values"
 with(product)
 {
 name == "A product"
 stock == 0

Listing 7.8 Running multiple test methods in order

Ensures that all methods
run in the order shown
in the source file

orms a DELETE
call on the /

ducts endpoint

Performs a GET
call on the /

products endpoint

Performs a POST
call on the /

products endpoint

Examines the
JSON response
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

210 CHAPTER 7 Integration and functional testing with Spock
 price == 0
 weight == 0
 }

 and: "product list should contain it"
 products.size() == 1
 }
}

This listing includes test methods for the /products endpoint. The code should be
familiar if you’ve ever worked with the Spring RestTemplate. There’s nothing Spock-
specific inside the test methods. All code segments are Java statements that would
work the same way in a JUnit test.

 You should pay special attention, however, to the @Stepwise annotation at the top
of the class. This Spock annotation comes in handy and does two things:

■ It makes sure that Spock will run all test methods in the order they’re defined
in the Specification class.

■ During runtime, if any test method fails, those that come after it will be skipped.

The purpose of the @Stepwise annotation is to save you time when you have many
functional tests. Although in theory all functional tests are independent, in practice
this is rarely the case. For example, if the first test method fails (the one that checks
the /status endpoint), the test environment is probably down, so there’s no point in
running any more tests.

 The @Stepwise annotation saves you time because you’re informed right away when
something fails and can understand what the problem is more easily than when all tests
fail. Figure 7.9 shows the runtime result with and without the @Stepwise annotation.

With @Stepwise
annotation

Without @Stepwise
annotation

Figure 7.9 The @Stepwise annotation skips subsequent test methods after a failure.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

211Functional testing of REST services with Spock

DEL
th
With the @Stepwise annotation enabled, you can see in two seconds that the test envi-
ronment is down, instead of waiting four seconds for all tests to run (and fail). In a
real enterprise project with hundreds of functional tests that may take several minutes
(or even hours), the @Stepwise annotation is a lifesaver, as it drastically cuts the time
of developer feedback after a failed build. With the @Stepwise annotation, you also
get a clear indication if a bug failed because another precondition (contained in a
previous test method) also failed.

7.3.4 Testing REST services using Groovy RESTClient

As with integration tests, the advantage of using Spock is that you’re not constrained
to Java libraries; you can also use Groovy utilities. As an example, an alternative REST
client can be used instead of the Spring RestTemplate.17

 The following listing presents the same test as in listing 7.8, this time using the
Groovy RESTClient.

@Stepwise
class GroovyRestClientSpec extends Specification {

 @Shared
 def client = new RESTClient("http://localhost:8080/rest-service-
 example/")

 def "Simple status checker"() {
 when: "a rest call is performed to the status page"
 def response = client.get(path : "status")

 then: "the correct message is expected"
 with(response)
 {
 data.text == "Up and Running"
 status == 200
 }
 }

 def "Cleaning all products"() {
 given: "a rest call is performed that deletes everything"
 client.delete(path : "products")

 when: "a product list is requested"
 def response = client.get(path : "products")

 then: "it should be empty"
 with(response)
 {
 data.isEmpty()
 status == 200

17 A Groovy library for consuming REST services is found at https://github.com/jgritman/httpbuilder/wiki/
RESTClient.

Listing 7.9 Using Groovy RESTClient in a Spock test

Makes sure that all
methods run in order

Creates a
REST client

Performs a GET
call on the /status
endpoint

Examines the
 text response

Examines HTTP
error code

Performs a
ETE call on
e /products

endpoint
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

https://github.com/jgritman/httpbuilder/wiki/RESTClient
https://github.com/jgritman/httpbuilder/wiki/RESTClient

212 CHAPTER 7 Integration and functional testing with Spock

 }
 }

 def "Creating a product"() {
 when: "a new product is created"
 def response = client.post(path : "products")

 and: "product list is requested again"
 def listResponse = client.get(path : "products")

 then: "it should have default values"
 with(response)
 {
 data.name == "A product"
 data.stock == 0
 data.price == 0
 status == 200
 }

 and: "product list should contain it"
 listResponse.data.size() == 1
 }
}

As you can see, the code is mostly the same. For each method call, you also check the
HTTP error code, as it’s easy to verify with the RESTClient. As an exercise, feel free to
write a functional test for the other endpoints of the application (the calls for renaming
an existing product). The Groovy RESTClient has many more facilities, not shown in list-
ing 7.9, that might be helpful in your own application should you choose to use it.

7.4 Functional testing of web applications with Spock
The previous section covered functional tests for back-end Java applications that
aren’t interactive. This section shows you how to test front-end applications that sport
a web interface accessible via the browser.

 For these kinds of tests, you need a way to control the browser and replicate the
actions (for example, fill forms or click buttons) that a human user typically performs.
Spock doesn’t have built-in support for this and instead collaborates with Geb, the
Groovy browser automation library.

7.4.1 Browser automation with Geb

Geb is a library that provides a Groovy abstraction on top of the popular Selenium/
WebDriver18 framework for automating a browser. If you’ve worked with Selenium, you
already know what Geb does. What Geb brings to the table is excellent integration19

18 You can learn more about the Selenium suite of tools at www.seleniumhq.org/.
19 Geb is written by Luke Daley, who is also a Spock committer.

Performs a POST call on
the /products endpoint
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

www.seleniumhq.org/

213Functional testing of web applications with Spock
with Spock and a jQuery-like language20 for accessing web page content. If you already
know jQuery (or any other similar CSS selector syntax), Geb will be familiar to you.

 As a quick example, if you want to examine the text for the h2 header in a web
page, Geb allows you to write the following:

$("h2").text()

If you want to click the button with an ID myButton, Geb offers you this:

$("#myButton").click()

With Geb, you reuse your knowledge of jQuery. If you’re not familiar with jQuery, you
need to examine its documentation, and especially the part for CSS selectors, in order
to fully use Geb.

7.4.2 The example web application

The application you’ll test with Spock and Geb is a simple web interface over the ware-
house manager you’ve seen in the previous examples. Figure 7.10 shows a sample
screen from this application.

The code uses Spring MVC, but in a similar manner to the REST tests, the implementa-
tion technology doesn’t matter. Geb interacts with only the final web page and doesn't
care about the underlying technology. You could write Spock/Geb tests for a PHP
application, using the same CSS selectors.

20 You can learn more about jQuery at https://jquery.com/.

Figure 7.10 Web interface that will
be used for Spock tests
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

https://jquery.com/

214 CHAPTER 7 Integration and functional testing with Spock

Ord
bro

a

7.4.3 Spock and Geb: a match made in heaven

Let's start with a simple example of Spock and Geb together. As a first test, you’ll verify
the title of the first page of the application. Figure 7.11 shows the expected result.

 The next listing provides the Geb specification that tests this.

class HomePageSpec extends GebSpec {

 def "Trivial Geb test for homepage"() {
 when: "I go to homepage"
 Browser.drive {
 go "http://localhost:8080/web-ui-example/index.html"
 }

 then: "First page should load"
 title == "Spock/Geb Web example"

 }

}

The most important thing to notice in listing 7.10 is that the test class extends the
GebSpec class and not the Spock Specification, as shown in all examples so far. This
is essential so that Geb methods and objects are available inside the Spock methods.

 After this is done, you use the Browser object to load the first page of the applica-
tion. Finally, you examine the title object. This object is an implicit one offered by
Geb and always represents the HTML title of the current HTML page. It doesn’t follow
the jQuery pattern because it’s not part of the content of the page.

Listing 7.10 Using Geb and Spock together

Figure 7.11 Expected result for title page is the string "Spock/Geb Web example"

Spock specification class that
makes Geb facilities available

ers the test
wser to load
 specific URL

Tests the title of
the application
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

215Functional testing of web applications with Spock

e

tent

Exam
conte

element
"active"
To see the jQuery syntax of Geb, let's modify the test to look at the page content in
addition to the page title. You’ll test an HTML header (h1) and also make sure that the
first tab of the user interface is selected. Figure 7.12 shows the expected result.

The updated Spock test verifies the title as before and reads the page content to
make sure that the expected text is present on the page (see the following listing).

def "Trivial Geb test for homepage -header check"() {
 when: "I go to homepage"
 Browser.drive {
 go "http://localhost:8080/web-ui-example/index.html"
 }

 then: "First page should load"
 title == "Spock/Geb Web example"
 $("h1").text() == "Java Testing with Spock - Sample code"
 $(".active").text() == "Welcome"
}

Will this test launch a browser?

Remember that Geb is an abstraction over Selenium/WebDriver, so it supports what-
ever browser implementations are already there. In the source code of the book, the
default browser is Firefox, so if you run this test, a new Firefox instance will be launched
on your computer and you’ll see it react automatically to the test definitions. You can
use other browsers or even browser emulators (such as Phantom.js, http://phantom
js.org/) as other options. Consult the Geb documentation on how to achieve this.

Listing 7.11 Using Geb to access page content

Figure 7.12 HTML
content that will be
verified by the Geb test.
You’ll verify the h1
element and the “active”
CSS class.

Launches the
first page of th
application in
the browser

Examines the
title of the page

Examines the con
of the h1 element

ines the
nt of the
 with the
CSS class
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

http://phantomjs.org/
http://phantomjs.org/

216 CHAPTER 7 Integration and functional testing with Spock

En
te
w
or

b
c

This listing demonstrates the jQuery-like style of Geb for accessing page content. The
last two lines in the then: block will be examined by Geb against the HTML content
found in the browser. The test will fail if the HTML content differs from the expected
one.

7.4.4 Using Geb to interact with a web page

For a more useful example than simple page loading, let’s see how to emulate user
actions on a web page. The sample application contains a form, shown in figure 7.13,
that allows the user to create a new product. An HTML form is used to define the name
of the product and its price. After the user submits the form, a success message appears.
You’ll create a test that navigates to the form page, inputs the name of the product,
submits the form, and verifies the success message (not shown in figure 7.13). The
code is shown in the next listing.

@Stepwise
class AddProductGebSpec extends GebSpec {

 def "Navigation to page"() {
 when: "I go to the new product page"
 Browser.drive {
 go "http://localhost:8080/web-ui-example/add-
 product.html"
 }

 then: "the form should load"
 $(".col1").$("h2").text() == "New Product details"
 }

Listing 7.12 Using Geb to submit HTML forms

Figure 7.13 Details of an HTML form. You’ll fill the input fields and submit it programmatically.

sures that
st methods
ill run in
der

This Spock test has
access to Geb facilities
by extending GebSpec.

Navigates to the page
with the HTML form

Verifies that
rowser is in
orrect page
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

217Functional testing of web applications with Spock

En

succ
sho
 def "Creation of new product"() {
 when: "I fill in product details"
 $("input[name='productName']").value("Bravia TV")
 $("#createProductButton").click()

 then: "I should see a success message"
 $(".ok").text() == "You added new product named: Bravia TV."
 }

}

This listing has several important points. First, you use the @Stepwise annotation
again. The reason for this is that the test contains two methods. The first one navigates
to the HTML form page, and the second submits the form. If the first fails for some
reason (for example, the application isn’t up), there’s no point in running the second
method. The @Stepwise annotation ensures that the form won’t be submitted if its
page can’t be found.

 Second, in order to verify the formed page, you use an HTML element chain:

$(".col1").$("h2").text() == "New Product details"

This line means, “Locate an element with the CSS class col1 and then search for a
child that is a header of level 2. This header should contain the text New product
details.”

 Next, the form is submitted with the following two lines:

$("input[name='productName']").value("Bravia TV")
$("#createProductButton").click()

The first line means, “Locate an HTML element of type input that has a name attribute
with value productName. Then fill in the text Bravia TV.” The second line says, “Find
an element with ID createProductButton. Then click it (assuming that it’s a button).”

 Running the test launches the Firefox browser on your computer, and you’ll see it
perform these actions in real time. The final line in the then: block locates an ele-
ment with CSS class ok and checks its text (in the example application, it’s a span
HTML element).

 I hope that this example gives you an idea of the capabilities of Geb. I’ve barely
scratched the surface of all the possible use cases. Check the official Geb documenta-
tion (http://www.gebish.org/manual/current/) for more details. Make sure not to
miss the Page Objects pattern21 for reducing22 duplicated code among tests and the
ability to get screenshots23 while a test runs. The previous tests shown are contrived
examples so that you get a feel for Geb’s capabilities. In a real application, you’d orga-
nize all your Spock tests around pages to make them resilient to GUI changes.

21 http://docs.seleniumhq.org/docs/06_test_design_considerations.jsp#page-object-design-pattern
22 www.gebish.org/pages
23 http://www.gebish.org/manual/current/

ters text into
an input field

Activates the
form buttonVerifies the

ess message
wn on page
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

http://docs.seleniumhq.org/docs/06_test_design_considerations.jsp#page-object-design-pattern
www.gebish.org/pages
http://www.gebish.org/manual/current/
http://www.gebish.org/manual/current/

218 CHAPTER 7 Integration and functional testing with Spock
 As an exercise, write Geb tests for the page of the application that lists existing prod-
ucts. Write a test that also fills in the price field of the form and then goes to the inven-
tory page and verifies that the product is correctly inserted with the correct price.

 As another exercise, modify your Geb tests to use Page objects instead of exposing
HTML elements inside them.

7.5 Running Spock tests as part of a build process
So far, I’ve silently assumed that whenever I show you a Spock test, you run it manually
and visually check the results in the IDE or the command-line shell. Although this is
true for your day-to-day development schedule, a well-designed enterprise application
employs a build server that automatically checks out code at various time intervals,
compiles it, runs unit tests, and creates reports in a completely automated manner.

 If you’re not familiar with build servers, explaining them is outside of the scope of
this book. As a suggestion, start by downloading Jenkins (https://jenkins-ci.org/) and
then read both the theory24 and practice25 behind a sound build process.

 For the rest of the chapter, I assume that you already have a build server in place
for running JUnit tests and mention only what you need to do for Spock (spoiler:
almost nothing, as Spock is JUnit-compatible).

7.5.1 Splitting unit, integration, and functional tests

If you look back at table 7.1, which lists the characteristics of unit, integration, and
functional tests, it should be clear that they have different requirements.

 For starters, functional (and sometimes integration) tests require a running rep-
lica of the system that’s tested. Therefore, you know that functional tests must be
treated differently than the rest of the tests.

 Another big difference is the speed of tests. Unit tests (which depend only on Java
code) are fast and give quick feedback. Integration and functional tests are much
slower (especially when external systems and real databases are involved).

 The speed of unit tests means that they can be executed automatically after every
developer commit for quick feedback. Functional tests, on the other hand, may run
less frequently (for example, once a day) and also require the setup of a test environ-
ment exclusive to them (which typically replicates the production environment).

 These best practices aren’t specific to Spock. They also apply to JUnit or TestNG. I
mention them here so that before complaining that “Geb tests are really slow,”
you should understand that Geb tests must run in a different manner than simpler
Spock tests.

24 See “Continuous Delivery” by Jez Humble and David Farley on the Martin Fowler website (http://martin
fowler.com/books/continuousDelivery.html).

25 See Jenkins: The Definitive Guide by John Ferguson Smart (O’Reilly, 2011), www.wakaleo.com/books/jenkins-
the-definitive-guide.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

http://martinfowler.com/books/continuousDelivery.html
http://martinfowler.com/books/continuousDelivery.html
www.wakaleo.com/books/jenkins-the-definitive-guide
www.wakaleo.com/books/jenkins-the-definitive-guide
https://jenkins-ci.org/

219Running Spock tests as part of a build process
In the sample code of the book, I use Maven and have chosen to launch the Tomcat
application server before the functional tests run. Figure 7.14 shows the Maven life-
cycle26 for the examples of this chapter.

 With this approach, you have a split between slow and fast tests. Running mvn test
runs only the fast unit tests, and running mvn verify also runs the slow functional
tests (after launching a Tomcat instance). This lifecycle is accomplished by using the
Maven Failsafe plugin (https://maven.apache.org/surefire/maven-failsafe-plugin/)
and the Tomcat plugin (http://tomcat.apache.org/maven-plugin.html), as shown in
the following listing.

[...rest of pom.xml....]
<build>
 <plugins>
 [...rest of build plugins....]
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-failsafe-plugin</artifactId>
 <version>2.18</version>
 <executions>
 <execution>
 <goals>
 <goal>integration-test</goal>
 <goal>verify</goal>
 </goals>
 </execution>
 </executions>

26 You can learn more about the Maven lifecycle at the Apache Maven Project website (https://
maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html).

Listing 7.13 Running Spock functional tests on a Tomcat instance

compile

test-compile

test

package

pre-integration-test

integration-test

post-integration-test

verify

Java code is compiled

Spock tests are compiled

Unit tests run (fast)

Tomcat starts—application deployed

REST/web functional tests run (slow)

Tomcat stops—application shuts down

Functional tests are examined

Maven
phases

Figure 7.14 Tomcat is launched before functional tests and shuts down afterward.

Instructs Failsafe plugin
to run Spock tests in
integration-test phase
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

https://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html
https://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html
https://maven.apache.org/surefire/maven-failsafe-plugin/
http://tomcat.apache.org/maven-plugin.html

220 CHAPTER 7 Integration and functional testing with Spock
 <configuration>
 <useFile>false</useFile>
 <includes>
 <include>**/*Spec.java</include>
 </includes>
 </configuration>
 </plugin>
 <plugin>
 <groupId>org.apache.tomcat.maven</groupId>
 <artifactId>tomcat7-maven-plugin</artifactId>
 <version>2.2</version>
 <executions>

 <execution>
 <id>tomcat-run</id>
 <goals>
 <goal>run-war-only</goal>
 </goals>
 <phase>pre-integration-test</phase>
 <configuration>
 <fork>true</fork>
 </configuration>
 </execution>
 <execution>
 <id>tomcat-shutdown</id>
 <goals>
 <goal>shutdown</goal>
 </goals>
 <phase>post-integration-test</phase>
 </execution>
 </executions>
 </plugin>
 </plugins>
</build>

This technique works for small- to medium-size applications. For large-scale enterprise
applications that need specialized test environments, you need to adapt your build sys-
tem according to your business requirements in cooperation with the team responsi-
ble for provisioning.27

Running both Spock and JUnit tests in the same Java project

If it isn't clear by now, the Maven plugins (Surefire and Failsafe) will run both JUnit
and Spock tests in a similar manner. No special configuration is needed if you have
both kinds of tests. You can mix and match, and many configurations are possible.
For example, you could have JUnit tests run as pure unit tests and use Spock only
for web tests (with Geb). Consult the Maven documentation for the respective plugins
and appendix A of this book for more information on the subject.

27 I hear they’re called “devops” these days.

Naming convention for
Spock tests that will run
as integration-test phase

Starts Tomcat before
Spock tests run

Stops Tomcat after
Spock tests run
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

221Running Spock tests as part of a build process
7.5.2 Getting code coverage from Spock tests

For some strange reason, when I introduce Spock to Java developers, even after I
explain that it uses the JUnit runner, the first question they ask is how to obtain code
coverage statistics with Spock.

 The answer to this question is, “In the same way that you get coverage reports28 for
JUnit.” There’s nothing special about it. Figure 7.15 shows a sample JaCoCo report
(www.eclemma.org/jacoco/) that was generated by Spock tests.

 There’s nothing Spock-specific about this report. I obtained it by adding JaCoCo
in my pom.xml file and executing the jacoco:report goal with Maven as I would for
Junit, as shown in the following listing.

[...rest of build plugins here...]
<plugin>
 <groupId>org.jacoco</groupId>
 <artifactId>jacoco-maven-plugin</artifactId>
 <version>0.7.4.201502262128</version>
 <executions>
 <execution>
 <id>prepare-agent</id>
 <goals>
 <goal>prepare-agent</goal>
 </goals>
 </execution>
 </executions>
</plugin>
[...rest of pom.xml here...]

The same principle applies to any other tools that you have around JUnit. If they work
fine with JUnit, they’ll probably work with Spock as well. For a full-blown, code-quality
reporting tool, you should also look at SonarQube (www.sonarqube.org) if you aren’t
already using it.

28 Common coverage tools are Cobertura (http://cobertura.github.io/cobertura/) and Clover (www.atlassian
.com/software/clover/).

Listing 7.14 Using JaCoCo with Spock

Figure 7.15 Code coverage by Spock tests
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

www.eclemma.org/jacoco/
http://cobertura.github.io/cobertura/
www.atlassian.com/software/clover/
www.atlassian.com/software/clover/

222 CHAPTER 7 Integration and functional testing with Spock
Using Spock with SonarQube requires exactly zero extra configuration (apart from
the standard instructions29). An example of SonarQube results from a Spock test is
shown in listing 7.16.

 I hope that the level of compatibility between JUnit-enabled tools and Spock tests is
clear to you now.

7.6 Summary
■ Unit tests focus on a single class. Integration tests focus on a module. Func-

tional tests focus on the whole application.
■ Unit/integration/functional tests have different characteristics and constraints.

They should be handled differently.
■ According to the testing pyramid, as a rule of thumb, 70% of total tests should

be pure unit tests, 20% should be slower integration tests, and 10% should be
even slower functional tests.

■ Spock supports both integration and functional tests (as well as pure unit tests,
as already shown in the previous chapters).

■ Spock will automatically load a Spring context if the Specification class is
annotated with the Spring ContextConfiguration annotation.

29 An excellent resource is SonarQube in Action by G. Ann Campbell and Patroklos P. Papapetrou (Manning,
2013), www.manning.com/papapetrou/.

Figure 7.16 Code coverage from
SonarQube after Spock tests run
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

www.manning.com/papapetrou/

223Summary
■ Inside a Spring-enabled Spock test, all normal test facilities from Spring are
available (including transactions).

■ A good practice is using a separate Spring context just for tests. It shouldn’t
contain classes unrelated to testing and it should replace slow services and data-
bases with mocked ones or in-memory implementations, respectively.

■ Groovy SQL can be used to directly access the database as an alternative to exist-
ing Java solutions.

■ Spock supports Guice tests via a built-in extension. Spock also supports Arquil-
lian tests via an external extension.

■ Spock can test REST services by using the existing Java client REST libraries.
■ An alternative to Java REST client libraries is the Groovy RESTClient library.
■ The Stepwise annotation can be used in Spock tests with multiple test methods

to ensure correct ordering of the method.
■ All methods that come after a failed one will be skipped by Spock, allowing for

faster developer feedback if the Stepwise annotation is used.
■ Geb is a browser automation library that uses WebDriver/Selenium and offers a

jQuery-like syntax for accessing page content.
■ Spock and Geb can work together to create web-related functional tests.
■ Geb facilities are possible if a test extends the GebSpec class instead of the stan-

dard Spock Specification.
■ Geb can direct the browser, fill in forms, click buttons, and generally mimic a

human user interacting with a browser.
■ Spock unit/integration/functional tests should be handled differently inside

the build process, mainly because of different time constraints.
■ You can use the Maven failsafe and Tomcat plugins to run Spock functional

tests with a live application.
■ Running both JUnit and Spock tests is possible without any special configuration.
■ Getting coverage reports from Spock tests is exactly the same as getting cover-

age reports from JUnit (using JaCoCo).
■ Spock is compatible with the SonarQube quality dashboard out of the box.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

Spock features for
enterprise testing
One of the good qualities of a flexible software tool is the ability to adapt to any
software situation, especially the corner cases that appear in large enterprise proj-
ects. Enterprise projects often come in large code bases (think millions of code
lines), have an endless stream of requirements, and more often than not contain
legacy modules that can’t be changed for political or technical reasons.

 Chapter 1 showed that Spock is a holistic testing solution that will cover your
needs regardless of the size of the application and whether you work solo or as part
of a large team. A bigger code base always amounts to extra complexity on all fronts
(compilation, documentation, and delivery), and it’s good to know that Spock has
you covered even when your needs are off the beaten path.

 This last chapter of the book shows you extra Spock features that are geared
toward large enterprise projects. These techniques are in no way essential for
Spock testing, as they solve specific problems that you might not encounter in your

This chapter covers
■ Using Spock annotations that are helpful in

enterprise testing
■ Refactoring large Spock tests
■ Testing legacy code with spy objects
224

Licensed to Stephanie Bernal <nordicka.n@gmail.com>

225Using additional Spock features for enterprise tests

 if
ion is
ock.
current project. Before employing any of the advice in this chapter, make sure that
you indeed suffer from the specific problem being discussed. More importantly, the
last section explains spy objects, a feature that I strongly advise you not to use, unless
this is your last resort.

 This chapter has three distinct parts, listed here in roughly the order I expect you
to use them in your Spock tests:

1 Using Spock annotations for time-outs, exceptions, conditional test running,
and so on

2 Refactoring of large then: blocks that contain assertions or interactions
3 Using spies as partial mocks (continuing fake objects from chapter 6)

Spies are a controversial feature (not just with Spock1), so make sure that you under-
stand the implications of using them in your unit tests (and what that means for your
Java production code). Use of spies implies that your Java code suffers from design
problems, as you’ll see in the last section.

8.1 Using additional Spock features for enterprise tests
Chapter 4 covered all Spock blocks in detail as well as the general structure of a Spock
test. Spock offers several complementary features in the form of annotations that fur-
ther enhance the expressiveness of your tests.

 The Spock tests demonstrated here are based on the e-shop example introduced
in chapter 6. They revolve around placing products in an electronic basket and paying
via credit card.

8.1.1 Testing the (non)existence of exceptions: thrown() and notThrown()

In all Spock tests that I’ve shown you so far, the expected result is either a set of asser-
tions or the verification of object interactions. But in some cases, the “expected” result
is throwing an exception. If you’re developing a library framework, for example, you
have to decide what exceptions will be thrown to the calling code and verify this deci-
sion with a Spock test. The next listing demonstrates the capturing of an exception.

def "Error conditions for unknown products"() {
 given: "a warehouse"
 WarehouseInventory inventory = new WarehouseInventory()

 when: "warehouse is queried for the wrong product"
 inventory.isProductAvailable("productThatDoesNotExist",1)

 then: "an exception should be thrown"
 thrown(IllegalArgumentException)
}

1 Mockito’s official documentation also has a huge warning against the usage of spies.

Listing 8.1 Expecting an exception in a Spock test

This test will pass only
IllegalArgumentExcept
thrown in the when: bl
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

226 CHAPTER 8 Spock features for enterprise testing

The
pa

the e
c

specific
Here you design the Warehouse class so that it throws an exception when it can’t find
the name of a product. When this test runs, you explicitly tell Spock that the when:
block will throw an exception. The test will fail if an exception isn’t thrown, as shown
in figure 8.1.

 In this case, you use an existing exception as offered by Java, but the same syntax
works with any kind of exception. (You could create a custom exception class called
ProductNotFoundException instead.)

 It’s also possible to “capture” the exception thrown and perform further assertions
in order to make the test stricter. The following listing provides an example of a mes-
sage of an exception that’s checked.

def "Error conditions for unknown products - better"() {
 given: "a warehouse"
 WarehouseInventory inventory = new WarehouseInventory()

 when: "warehouse is queried for the wrong product"
 inventory.isProductAvailable("productThatDoesNotExist",1)

 then: "an exception should be thrown"
 IllegalArgumentException e = thrown()
 e.getMessage() == "Unknown product productThatDoesNotExist"
}

This listing further enhances the code of listing 8.1 by checking both the type of the
exception and its message. Here you examine the built-in message property that’s pres-
ent in all Java exceptions, but again, you could examine any property of a custom-made
exception instead (the last statement in listing 8.2 is a standard Groovy assertion).

 Finally, it’s possible to define in a Spock test that you don’t expect an exception for
an operation in the when: block, as the following listing shows. I admit that the seman-
tics of this syntax are subtle, but the capability is there if you need it.

Listing 8.2 Detailed examination of an expected exception

Figure 8.1 The test will fail if an exception isn’t thrown in the when: block.

Keeps the exception
thrown in the e variable

 test will
ss only if
xception

ontains a
message.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

227Using additional Spock features for enterprise tests

def "Negative quantity is the same as 0"() {
 given: "a warehouse"
 WarehouseInventory inventory = new WarehouseInventory()
 and: "a product"
 Product tv = new Product(name:"bravia",price:1200,weight:18)

 when: "warehouse is loaded with a negative value"
 inventory.preload(tv,-5)

 then: "the stock is empty for that product"
 notThrown(IllegalArgumentException)
 !inventory.isProductAvailable(tv.getName(),1)
}

I believe that the notThrown() syntax is intended as a hint to the human reader of the
test and not so much to the test framework itself.

8.1.2 Mapping Spock tests to your issue-tracking system: @Issue

In chapter 4, you saw the @Subject, @Title, and @Narrative annotations that serve as
metadata for the Spock test. These annotations are particularly useful to nontechnical
readers of the tests (for example, business analysts) and will show their value when
reporting tools use them for extra documentation.

 Any nontrivial enterprise application has a product backlog or issue tracker that
serves as a central database of current bugs and future features. Spock comes with an
@Issue annotation that allows you to mark a test method that solves a specific issue
with the code, as shown in the following listing.

@Issue("JIRA-561")
def "Error conditions for unknown products"() {
 given: "a warehouse"
 WarehouseInventory inventory = new WarehouseInventory()

 when: "warehouse is queried for the wrong product"
 inventory.isProductAvailable("productThatDoesNotExist",1)

 then: "an exception should be thrown"
 thrown(IllegalArgumentException)
}

Notice that the annotation has a strictly informational role. At least at the time of writ-
ing, no automatic connection to any external system exists (in this example, to JIRA,
available at www.atlassian.com/software/jira). In fact, the value inside the annotation
is regarded as free text by Spock. The next listing shows another example using a full
URL of a Redmine tracker (www.redmine.org).

Listing 8.3 Explicit declaration that an exception shouldn’t happen

Listing 8.4 Marking a test method with the issue it solves

Clarifies the intention of
testing normal operation
without exception

This test method
verifies the fix
that happened for
JIRA issue 561.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

www.atlassian.com/software/jira
www.redmine.org

228 CHAPTER 8 Spock features for enterprise testing

@Issue("http://redmine.example.com/issues/2554")
def "Error conditions for unknown products - better"() {
 given: "a warehouse"
 WarehouseInventory inventory = new WarehouseInventory()
 when: "warehouse is queried for the wrong product"
 inventory.isProductAvailable("productThatDoesNotExist",1)

 then: "an exception should be thrown"
 IllegalArgumentException e = thrown()
 e.getMessage() == "Uknown product productThatDoesNotExist"
}

Finally, a common scenario is having multiple issue reports that stem from the same
problem. Spock has you covered, and you can use multiple issues, as shown in the fol-
lowing listing.

@Issue(["JIRA-453","JIRA-678","JIRA-3485"])
def "Negative quantity is the same as 0"() {
 given: "a warehouse"
 WarehouseInventory inventory = new WarehouseInventory()

 and: "a product"
 Product tv = new Product(name:"bravia",price:1200,weight:18)

 when: "warehouse is loaded with a negative value"
 inventory.preload(tv,-5)

 then: "the stock is empty for that product"
 notThrown(IllegalArgumentException)
 !inventory.isProductAvailable(tv.getName(),1)
}

The @Issue annotation is also handy when you practice test-driven development, as
you can use it to mark Spock tests for product features before writing the production
code.

8.1.3 Failing tests that don’t finish on time: @Timeout

Chapter 7 covered integration and functional tests and how they differ from pure
unit tests. A common characteristic of integration tests is their slow execution time
because of real databases, web services, and external systems that are often used as
part of the test.

 Getting quick feedback from a failed unit test should be one of your primary goals
when writing integration tests. The external systems used in integration tests can
affect the execution time in a nondeterministic way, as their response time is affected
by their current load or other environmental reasons.

Listing 8.5 Using the URL of an issue solved by a Spock test

Listing 8.6 Marking a Spock test with multiple issues

This test method verifies
the fix that happened
for Redmine issue 2554.

This test method
verifies the fix for
three duplicate bugs.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

229Using additional Spock features for enterprise tests

Th
CardP

c
externa
 Spock comes with an @Timeout annotation that unconditionally fails a test if its
execution time passes the given threshold. The following listing shows an example.

@Timeout(5)
def "credit card charge happy path"() {
 given: "a basket, a customer and a TV"
 Product tv = new Product(name:"bravia",price:1200,weight:18)
 BillableBasket basket = new BillableBasket()
 Customer customer = new
 Customer(name:"John",vip:false,creditCard:"testCard")

 and: "a credit card service"
 CreditCardProcessor creditCardSevice = new CreditCardProcessor()
 basket.setCreditCardProcessor(creditCardSevice)

 when: "user checks out the tv"
 basket.addProduct tv
 boolean success = basket.checkout(customer)

 then: "credit card is charged"
 success
}

The reasoning behind the @Timeout annotation is that it helps you quickly isolate
environmental problems in your integration tests. If a service is down, there’s no point
in waiting for the full time-out of your Java code (which could be 30 minutes, for
example) before moving to the next unit test.

 Using the @Timeout annotation, you can set your own bounds on the “expected”
runtime of an integration test and have Spock automatically enforce it. The default
unit is seconds, as shown in the previous listing, but you can override it with your own
setting, as shown in the next listing.

@Timeout(value = 5000, unit = TimeUnit.MILLISECONDS)
def "credit card charge happy path - alt "() {
 given: "a basket, a customer and a TV"
 Product tv = new Product(name:"bravia",price:1200,weight:18)
 BillableBasket basket = new BillableBasket()
 Customer customer = new
 Customer(name:"John",vip:false,creditCard:"testCard")

 and: "a credit card service"
 CreditCardProcessor creditCardSevice = new CreditCardProcessor()
 basket.setCreditCardProcessor(creditCardSevice)

 when: "user checks out the tv"
 basket.addProduct tv
 boolean success = basket.checkout(customer)

 then: "credit card is charged"
 success
}

Listing 8.7 Declaring a test time-out

Listing 8.8 Declaring a test time-out—custom unit

This test should finish
within five seconds.

e Credit-
rocessor
lass is an
l service.

This is a lengthy
operation that contacts
the credit card service.

Treats the defined
value as milliseconds
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

230 CHAPTER 8 Spock features for enterprise testing

The importance of the @Timeout annotation is evident in the case of multiple long
tests that take a long time to finish. I’ve seen build jobs that typically take minutes but
because of a misconfiguration can take hours if time-outs aren’t used correctly.

8.1.4 Ignoring certain Spock tests

A large enterprise application can have thousands of unit tests. In an ideal world, all
of them would be active at any given time. In real life, this is rarely the case.

 Test environments that get migrated, features that wait to be implemented, and
business requirements that aren’t yet frozen are common reasons that force some
tests to be skipped. Fortunately, Spock offers several ways to skip one or more tests
deliberately so your tests don’t fail while these restructurings and developments are
taking place.

IGNORING A SINGLE TEST: @IGNORE

Spock allows you to knowingly skip one or more tests and even provides you with the
ability to give a reason for skipping that test (see the next listing).

@Ignore("Until credit card server is migrated")
def "credit card charge happy path"() {
 given: "a basket, a customer and a TV"
 Product tv = new Product(name:"bravia",price:1200,weight:18)
 BillableBasket basket = new BillableBasket()
 Customer customer = new
 Customer(name:"John",vip:false,creditCard:"testCard")

 and: "a credit card service"
 CreditCardProcessor creditCardSevice = new CreditCardProcessor()
 basket.setCreditCardProcessor(creditCardSevice)

 when: "user checks out the tv"
 basket.addProduct tv
 boolean success = basket.checkout(customer)

 then: "credit card is charged"
 success

}

The primary purpose of skipping a test is so that the rest of your test suite is run suc-
cessfully by your build server. An ignored test should always be a temporary situation
because you’re vulnerable to code changes that would normally expose a bug verified
by that test.

 The human-readable description inside the @Ignore annotation should give a hint
about why this test is ignored (the value is free text, as far as Spock is concerned).
More often than not, the original developer who marks a test as ignored doesn’t
always remove the @Ignore annotation, so it’s essential to document inside the source
code the reason why the test was skipped in the first place.

Listing 8.9 Ignoring a single test

This test will be skipped
when Spock runs it.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

231Using additional Spock features for enterprise tests

Marking
as the

tha
 You can place @Ignore on a single test method or on a whole class if you want all its
test methods to be skipped.

IGNORING ALL BUT ONE TEST: @IGNOREREST

If you’re also lucky, and you want to ignore all but one test in a Spock specification,
you can use the @IgnoreRest annotation. Assume that you have a set of integration
tests that contact a credit card external service in a staging environment (it doesn’t
actually charge cards). The service is down for maintenance. To keep your tests run-
ning, you could ignore tests selectively, as shown in the following listing.

class KeepOneSpec extends spock.lang.Specification{

 def "credit card charge - integration test"() {
 [...code redacted for brevity...]

 }

 @IgnoreRest
 def "credit card charge with mock"() {
 [...code redacted for brevity...]

 }

 def "credit card charge no charge - integration test"() {
 [...code redacted for brevity...]

 }

}

Running the Spock test shown in this listing produces the output in figure 8.2.
 Again, I admit that this Spock annotation is specialized, and you might never need

to use it.

IGNORING SPOCK TESTS ACCORDING TO THE RUNTIME ENVIRONMENT: @IGNOREIF PART 1

The @Ignore annotations shown in the previous paragraph are completely static. A
test is either skipped or not, and that decision is made during compile time.

Listing 8.10 Ignoring all tests except one

This test uses the real
credit card service—it
will be skipped. this test

 only one
t will run

This test uses only
mocks and thus
can run normally

This test uses the real
credit card service—it

will be skipped.

Figure 8.2 Only the test marked with @IgnoreRest runs.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

232 CHAPTER 8 Spock features for enterprise testing
Spock offers a set of smarter @Ignore annotations that allow you to skip tests dynami-
cally (by examining the runtime environment). As a first step, Spock allows a test to
query the following:

■ The current environment variables
■ The JVM system properties
■ The operating system

Spock then decides whether the test will run, depending on that result. An example of
skipping tests is shown in the next listing.

class SimpleConditionalSpec extends spock.lang.Specification{

 @IgnoreIf({ jvm.java9 })
 def "credit card charge happy path"() {
 [...code redacted for brevity...]

 }

 @IgnoreIf({ os.windows })
 def "credit card charge happy path - alt"() {
 [...code redacted for brevity...]

 }

 @IgnoreIf({ env.containsKey("SKIP_SPOCK_TESTS") })
 def "credit card charge happy path - alt 2"() {
 [...code redacted for brevity...]
 }

}

Running this listing on my Windows system with JDK 7 and no extra JVM properties
produces the output shown in figure 8.3.

Listing 8.11 Skipping Spock tests according to the environment

This test will be
skipped on Java 9.

This test will be skipped
if run on Windows.

This test will be
skipped if the property
SKIP_SPOCK_TESTS
is defined.

Figure 8.3 A test is skipped because the current OS is Windows.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

233Using additional Spock features for enterprise tests

only
ne()

ue.

Th
CardP

c
externa
I won’t list all possible options supported by Spock. You can find the full details in its
source code.2 Ignoring tests depending on environment variables enables you to split
your tests into separate categories/groups, which is a well-known technique. As an
example, you could create “fast” and “slow” tests and set up your build server with two
jobs for different feedback lifecycles.

IGNORING CERTAIN SPOCK TESTS WITH PRECONDITIONS: @IGNOREIF PART 2

To obtain the maximum possible flexibility from @IgnoreIf annotations, you need to
define your own custom conditions. You can do this easily in Spock because the
@IgnoreIf annotation accepts a full closure. The closure will be evaluated and the test
will be skipped if the result is false.

 The following listing shows a smarter Spock test that runs only if the CreditCard-
Service is up and running.

@IgnoreIf({ !new CreditCardProcessor().online() })
def "credit card charge happy path - alt"() {
 given: "a basket, a customer and a TV"
 Product tv = new Product(name:"bravia",price:1200,weight:18)
 BillableBasket basket = new BillableBasket()
 Customer customer = new
 Customer(name:"John",vip:false,creditCard:"testCard")

 and: "a credit card service"
 CreditCardProcessor creditCardSevice = new CreditCardProcessor()
 basket.setCreditCardProcessor(creditCardSevice)

 when: "user checks out the tv"
 basket.addProduct tv
 boolean success = basket.checkout(customer)

 then: "credit card is charged"
 success
}

This listing assumes that the Java class representing the external credit card system has
a built-in method called online() that performs a “ping” on the remote host. Spock
runs this method, and if it gets a negative result, it skips the test (there’s no point in
running it if the service is down).

 The contents of the closure passed as an argument in the @IgnoreIf annotation
can be any custom code you write. If, for example, the built-in online() method
wasn’t present, you could create your own Java (or Groovy) class that performs an
HTTP request (or something appropriate) to the external system and have that inside
the closure.

2 https://github.com/spockframework/spock/tree/master/spock-core/src/main/java/spock/util/
environment

Listing 8.12 Skipping a Spock test based on a dynamic precondition

This test will run
if the method onli
of the credit card
service returns tr

e Credit-
rocessor
lass is an
l service.

This operation contacts
the credit card service.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

https://github.com/spockframework/spock/tree/master/spock-core/src/main/java/spock/util/environment
https://github.com/spockframework/spock/tree/master/spock-core/src/main/java/spock/util/environment

234 CHAPTER 8 Spock features for enterprise testing

only
ne()

ue.

Th
CardP

c
externa

n()
the
ice
the
sts.
REVERSING THE BOOLEAN CONDITION OF IGNOREIF: @REQUIRES

If for some reason you find yourself always reverting the condition inside the
@IgnoreIf annotation (as seen in listing 8.12, for example), you can instead use the
@Requires annotation, as the following listing shows.

@Requires({ new CreditCardProcessor().online() })
def "credit card charge happy path"() {
 given: "a basket, a customer and a TV"
 Product tv = new Product(name:"bravia",price:1200,weight:18)
 BillableBasket basket = new BillableBasket()
 Customer customer = new
 Customer(name:"John",vip:false,creditCard:"testCard")

 and: "a credit card service"
 CreditCardProcessor creditCardSevice = new CreditCardProcessor()
 basket.setCreditCardProcessor(creditCardSevice)

 when: "user checks out the tv"
 basket.addProduct tv
 boolean success = basket.checkout(customer)

 then: "credit card is charged"
 success

}

The @Requires annotation has the same semantics as @IgnoreIf but with the reverse
behavior. The test will be skipped by Spock if the code inside the closure does not eval-
uate to true. The option to use one or the other annotation comes as a personal pref-
erence.

8.1.5 Automatic cleaning of resources: @AutoCleanup

Chapter 4 showed you the cleanup: block as a way to release resources (for example,
database connections) at the end of a Spock test regardless of its result. An alternative
way to achieve the same thing is by using the @AutoCleanup annotation, as shown in
the following listing.

@AutoCleanup("shutdown")
private CreditCardProcessor creditCardSevice = new CreditCardProcessor()

def "credit card connection is closed down in the end"() {
 given: "a basket, a customer and a TV"
 Product tv = new Product(name:"bravia",price:1200,weight:18)
 BillableBasket basket = new BillableBasket()
 Customer customer = new
 Customer(name:"John",vip:false,creditCard:"testCard")

Listing 8.13 Requires is the opposite of IgnoreIf

Listing 8.14 Releasing resources with AutoCleanup

This test will run
if the method onli
of the credit card
service returns tr

e Credit-
rocessor
lass is an
l service.

This operation contacts
the credit card service.

The shutdow
method of

credit card serv
will be called at

end of the te
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

235Handling large Spock tests
 and: "a credit card service"
 basket.setCreditCardProcessor(creditCardSevice)

 when: "user checks out the tv"
 basket.addProduct tv
 boolean success = basket.checkout(customer)

 then: "credit card is charged"
 success
}

If you mark a resource with the @AutoCleanup annotation, Spock makes sure that the
close() method will be called on that resource at the end of the test (even if the test
fails). You can use the annotation on anything you consider a resource in your tests.
Database connections, file handles, and external services are good candidates for the
@AutoCleanup annotation.

 You can override the method name that will be called by using it as an argument in
the annotation, as done in listing 8.11. In that example, the shutdown() method will
be called instead (Spock will call close() by default).

 I prefer to use the cleanup: block and cleanup()/cleanupSpec() methods as
explained in chapter 4 (especially when multiple resources must be released), but if
you’re a big fan of annotations, feel free to use @AutoCleanup instead.3 As you might
guess, @AutoCleanup works both with instance fields and objects marked with the
@Shared annotation shown in chapter 4.

 This concludes the additional Spock annotations,4 and we can now move to refac-
toring of big Spock tests.

8.2 Handling large Spock tests
The projects in most examples so far are trivial projects designed as a learning mate-
rial instead of production-quality applications. In the real world, enterprise projects
come with huge code bases that directly affect the size of unit tests.

 Even in the case of pure unit tests (non-integration tests), preparing the class
under test and its collaborators is often a lengthy process with many statements and
boilerplate code that’s essential for the correct functionality of the Java code tested,
but otherwise unrelated to the business feature being tested.

 I’ve provided some hints for making clear the intention of Spock tests using
Groovy with() and Spock with() methods, as seen in chapter 4. In this section, you’ll
take this grouping of statements one step further by completely refactoring the
respective statements in their own methods.

3 You can also ignore exceptions during cleanup if you use the annotation like @AutoCleanup(quiet =
true), but I don’t endorse this practice unless you know what you’re doing.

4 Yes, I know that expecting exceptions does not happen via annotations. Thanks for catching it!
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

236 CHAPTER 8 Spock features for enterprise testing
The running example here is a loan-approval application, shown in figure 8.4.
The Java classes that take part in the system are as follows:

■ Customer.java
■ Loan.java
■ CreditCard.java
■ ContactDetails.java
■ BankAccount.java

You can find the full source code in the GitHub repository of the book,5 but notice
that most classes are only skeletons designed to demonstrate specific techniques in
the Spock tests.

8.2.1 Using helper methods to improve code readability

Chapter 4 stressed the importance of the when: block and how critical it is to keep its
code short and understandable. But in big enterprise projects, long code segments
can appear in any Spock block, harming the readability of the test. As a starting exam-
ple, let’s see a unit test that has a long setup process, shown in the next listing.

def "a bank customer with 3 credit cards is never given a loan"() {
 given: "a customer that wants to get a loan"
 Customer customer = new Customer(name:"John Doe")

 and: "his credit cards"
 BankAccount account1 = new BankAccount()
 account1.with {
 setNumber("234234")
 setHolder("John doe")
 balance=30
 }
 CreditCard card1 = new CreditCard("447978956666")
 card1.with{
 setHolder("John Doe")

5 https://github.com/kkapelon/java-testing-with-spock/tree/master/chapter8/src/main/java/com/
manning/spock/chapter8/loan

Listing 8.15 A Spock test with long setup—don’t do this

Customer

Loan request

Bank

Approved

Rejected

$

Figure 8.4 A customer requests
a loan from a bank. The bank
approves or rejects the loan.

A badly designed
and: block. It contains
too much code.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

https://github.com/kkapelon/java-testing-with-spock/tree/master/chapter8/src/main/java/com/manning/spock/chapter8/loan
https://github.com/kkapelon/java-testing-with-spock/tree/master/chapter8/src/main/java/com/manning/spock/chapter8/loan

237Handling large Spock tests
 assign(account1)
 }
 customer.owns(card1)
 BankAccount account2 = new BankAccount()
 account2.with{
 setNumber("3435676")
 setHolder("John Doe")
 balance=30
 }
 CreditCard card2 = new CreditCard("4443543354")
 card2.with{
 setHolder("John Doe")
 assign(account2)
 }
 customer.owns(card2)
 BankAccount account3 = new BankAccount()
 account2.with{
 setNumber("45465")
 setHolder("John Doe")
 balance=30
 }
 CreditCard card3 = new CreditCard("444455556666")
 card3.with{
 setHolder("John Doe")
 assign(account3)
 }
 customer.owns(card3)

 when:"a loan is requested"
 Loan loan = new Loan()
 customer.requests(loan)

 then: "loan should not be approved"
 !loan.approved
}

At first glance, this unit test correctly follows the best practices outlined in chapter 4.
All the blocks have human-readable descriptions, the when: block clearly shows what’s
being tested (a loan request), and the final result is also clear (either the loan is
approved or it’s rejected).

 The setup of the test, however, is a gigantic piece of code that’s neither clear nor
directly relevant to the business case tested. The description of the block talks about
credit cards but contains code that creates both credit cards and bank accounts
(because apparently a credit card requires a valid bank account in place).

 Even with the use of the with() method for grouping several statements that act on
the same project, the setup code makes the test hard to read. It contains a lot of vari-
ables, and it’s not immediately clear whether they affect the test. For example, does it
matter that the account balance is $30 in each connected account? Does this affect the
approval of the loan? You can’t answer that question by reading the Spock test.

A well-designed when:
block. Code is short.

A well-designed then:
block. Code is short.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

238 CHAPTER 8 Spock features for enterprise testing

t

A h
method

deals
credit
 In such cases, a refactoring must take place so that the intention of the test
becomes clear and concise. Large amounts of code should be extracted to helper
methods, as shown in the next listing.

def "a bank customer with 3 credit cards is never given a loan -alt"() {
 given: "a customer that wants to get a loan"
 Customer customer = new Customer(name:"John Doe")

 and: "his credit cards"
 customer.owns(createSampleCreditCard("447978956666","John Doe"))
 customer.owns(createSampleCreditCard("4443543354","John Doe"))
 customer.owns(createSampleCreditCard("444455556666","John Doe"))

 when:"a loan is requested"
 Loan loan = new Loan()
 customer.requests(loan)

 then: "loan should not be approved"
 !loan.approved
}

private CreditCard createSampleCreditCard(String number, String holder)
{
 BankAccount account = new BankAccount()
 account.with{
 setNumber("45465")
 setHolder(holder)
 balance=30
 }
 CreditCard card = new CreditCard(number)
 card.with{
 setHolder(holder)
 assign(account)
 }
 return card
}

Here you extract the common code into a helper method. The helper method has the
following positive effects:

■ It reduces the amount of setup code.
■ It clearly shows that the setup code is a set of sample credit cards.
■ It hides the fact that a bank account is needed for creating a credit card (as this

is unrelated to the approval of a loan).
■ It shows by its arguments that the holder of the credit card must be the same as

the customer who requests the loan.

The added advantage of helper methods is that you can share them across test meth-
ods or even across specifications (by creating an inheritance among Spock tests, for
example). You should therefore design them so they can be reused by multiple tests.

Listing 8.16 Spock test with helper methods

Setup code
is now shor
and clear

elper
 that
 with
 card

The fact that each credit card
needs a bank account is
hidden in the helper method.

This helper method
creates a credit card.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

239Handling large Spock tests

Mak
credit car
unused in
 Depending on your business case, you can further refine the helper methods you
use to guide the reader of the test to what exactly is being tested. In a real-world proj-
ect, you might modify the Spock test as shown in the following listing.

def "a bank customer with 3 credit cards is never given a loan -alt 2"() {
 given: "a customer that wants to get a loan"
 String customerName ="doesNotMatter"
 Customer customer = new Customer(name:customerName)

 and: "his credit cards"
 customer.owns(createSampleCreditCard("anything",customerName))
 customer.owns(createSampleCreditCard("whatever",customerName))
 customer.owns(createSampleCreditCard("notImportant",customerName))

 expect: "customer already has 3 cards"
 customer.getCards().size() == 3

 when:"a loan is requested"
 Loan loan = new Loan()
 customer.requests(loan)

 then: "therefore loan is not approved"
 !loan.approved
}

This improved listing makes minor adjustments to the arguments of the helper
method. First, you use a single variable for the customer name. This guards against
any spelling mistakes so you can be sure that all credit cards are assigned to the same
customer (because as the description of the test says, the number of credit cards of the
customer is indeed examined for loan approval).

 Second, you replace the credit card numbers with dummy strings. This helps the
reader of the test understand that the number of each credit card isn’t used in loan
approval.

 As a final test, you add an expect: block (as demonstrated in chapter 4) that
strengthens the readability of the setup code.

 After all these changes, you can compare listings 8.15 with 8.17. In the first case,
you have a huge amount of setup code that’s hard to read, whereas in the second case,
you can understand in seconds that the whole point of the setup code is to assign
credit cards to the customer.

8.2.2 Reusing assertions in the then: block

Helper methods should be used in all Spock blocks when you feel that the size of the
code gets out of hand. But because of technical limitations, the creation of helper
methods for the then: block requires special handling.

Listing 8.17 Using arguments that imply their importance in the test

Enforces the same
customer for the
loan and credit cards

es it clear that
d numbers are
 loan approval

Explicitly verifies the
result of the setup
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

240 CHAPTER 8 Spock features for enterprise testing
 Again, as a starting example of a questionable design, let’s start with a big then:
block, as shown in the next listing.

def "Normal approval for a loan"() {
 given: "a bank customer"
 Customer customer = new Customer(name:"John
 Doe",city:"London",address:"10 Bakers",phone:"32434")

 and: "his/her need to buy a house "
 Loan loan = new Loan(years:5, amount:200.000)

 when:"a loan is requested"
 customer.requests(loan)

 then: "loan is approved as is"
 loan.approved
 loan.amount == 200.000
 loan.years == 5
 loan.instalments == 60
 loan.getContactDetails().getPhone() == "32434"
 loan.getContactDetails().getAddress() == "10 Bakers"
 loan.getContactDetails().getCity() == "London"
 loan.getContactDetails().getName() == "John Doe"
 customer.activeLoans == 1
}

Here the then: block contains multiple statements with different significance. First,
you have some important checks that confirm that the loan is indeed approved. Then
you have other checks that examine the details of the approved loan (and especially
the fact that they match the customer who requests it). Finally, it’s not clear whether
the numbers and strings that take part in the then: block are arbitrary or depend on
something else.6

 As a first step to improve this test, you’ll split the then: block into two parts and
group similar statements, as shown in the following listing.

def "Normal approval for a loan - alt"() {
 given: "a bank customer"
 Customer customer = new Customer(name:"John
 Doe",city:"London",address:"10 Bakers",phone:"32434")

 and: "his/her need to buy a house "
 int sampleTimeSpan=5
 int sampleAmount = 200.000

Listing 8.18 Spock test with dubious then: block

6 In this simple example, it’s obvious that the contact details of the loan are the same as the customer ones. In
a real-world unit test, this isn’t usually the case.

Listing 8.19 Improved Spock test with clear separation of checks

These examine
the loan approval.These checks

are secondary.

Makes clear the connection
between expected results
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

241Handling large Spock tests

Helper me
descrip
 Loan loan = new Loan(years:sampleTimeSpan, amount:sampleAmount)

 when:"a loan is requested"
 customer.requests(loan)

 then: "loan is approved as is"
 with(loan)
 {
 approved
 amount == sampleAmount
 years == sampleTimeSpan
 installments == sampleTimeSpan * 12
 }
 customer.activeLoans == 1

 and: "contact details are kept or record"
 with(loan.contactDetails)
 {
 getPhone() == "32434"
 getAddress() == "10 Bakers"
 getCity() == "London"
 getName() == "John Doe"
 }
}

The improved version of the test clearly splits the checks according to the business
case. You’ve replaced the number 60, which was previously a magic number, with the
full logic that installments are years times 12 (for monthly installments).

 The code that checks loan details still has hardcoded values. You can further
improve the code by using helper methods, as shown in the next listing.

def "Normal approval for a loan - improved"() {
 given: "a bank customer"
 Customer customer = new Customer(name:"John
 Doe",city:"London",address:"10 Bakers",phone:"32434")

 and: "his/her need to buy a house "
 int sampleTimeSpan=5
 int sampleAmount = 200.000
 Loan loan = new Loan(years:sampleTimeSpan, amount:sampleAmount)

 when:"a loan is requested"
 customer.requests(loan)

 then: "loan is approved as is"
 loanApprovedAsRequested(customer,loan,sampleTimeSpan,sampleAmount)

 and: "contact details are kept or record"
 contactDetailsMatchCustomer(customer,loan)
}

Listing 8.20 Using helper methods for assertions

Grouping of primary
loan checks

Makes clear the
 expected result

Different block for
secondary checks

thods with
tive names
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

242 CHAPTER 8 Spock features for enterprise testing
private void loanApprovedAsRequested(Customer customer,Loan loan,int
 originalYears,int originalAmount)
{
 with(loan)
 {
 approved
 amount == originalAmount
 loan.years == originalYears
 loan.instalments == originalYears * 12
 }
 assert customer.activeLoans == 1
}

private void contactDetailsMatchCustomer(Customer customer,Loan loan)
{
 with(loan.contactDetails)
 {
 phone == customer.phone
 address == customer.address
 city == customer.city
 name== customer.name
 }
}

This listing refactors the two separate blocks into their own helper methods. The
important thing to note is the format of each helper method.

 Your first impulse might be to design each helper method to return a Boolean if all
its assertions pass, and have Spock check the result of that single Boolean. This
doesn’t work as expected.

 The recommended approach, as shown in listing 8.20, is to have helper methods
as void methods. Inside each helper method, you can put one of the following:

■ A group of assertions with the Spock with() method
■ A Groovy assert but with the assert keyword prepended

Notice this line:

assert customer.activeLoans == 1

Because this statement exists in a helper method and not directly in a then: block, it
needs the assert keyword so Spock can understand that it’s an assertion. If you miss
the assert keyword, the statement will pass the test regardless of the result (which is a
bad thing).

 This listing also refactors the second helper method to validate loan details against
its arguments instead of hardcoded values. This makes the helper method reusable in
other test methods where the customer could have other values.

 Spend some time comparing listing 8.20 with the starting example of listing 8.18 to
see the gradual improvement in the clarity of the unit test.

with() method works as
expected in helper method.

assert keyword is needed
in helper method.

Clear connection between
loan and customer who
requested it
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

243Handling large Spock tests

Pr
8.2.3 Reusing interactions in the then: block

As you saw in the previous section, Spock needs some help to understand assertions in
helper methods. A similar case happens with mocks and interactions.

 The following listing shows an alternative Spock test, in which the loan class is
mocked instead of using the real class.7

def "Normal approval for a loan"() {
 given: "a bank customer"
 Customer customer = new Customer(name:"John
 Doe",city:"London",address:"10 Bakers",phone:"32434")

 and: "his/her need to buy a house "
 Loan loan = Mock(Loan)

 when:"a loan is requested"
 customer.requests(loan)

 then: "loan is approved as is"
 1 * loan.setApproved(true)
 0 * loan.setAmount(_)
 0 * loan.setYears(_)
 _ * loan.getYears() >> 5
 _ * loan.getAmount() >> 200.000
 _ * loan.getContactDetails() >> new ContactDetails()

}

The test in this listing contains multiple interaction checks in the then: block that
have a different business purpose. The Loan class is used in this case both as a mock
and as a stub. This fact is implied by the cardinalities in the interaction checks.

 You can improve this test by making clear the business need behind each interac-
tion check, as seen in the next listing.

def "Normal approval for a loan - alt"() {
 given: "a bank customer"
 Customer customer = new Customer(name:"John
 Doe",city:"London",address:"10 Bakers",phone:"32434")

 and: "his/her need to buy a house "
 Loan loan = Mock(Loan)

 when:"a loan is requested"
 customer.requests(loan)

Listing 8.21 Spock tests with questionable then: block

7 In this example, mocking the loan class is overkill. I mock it for illustration purposes only to show you helper
methods with mocks.

Listing 8.22 Explicity declaring helper methods with interactions

imary checks
 for the loan

Stubbed methods
needed for the correct
functioning of the test
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

244 CHAPTER 8 Spock features for enterprise testing

He
nam
bu
 then: "loan request was indeed evaluated"
 interaction {
 loanDetailsWereExamined(loan)
 }

 and: "loan was approved as is"
 interaction {
 loanWasApprovedWithNoChanges(loan)
 }

}

private void loanWasApprovedWithNoChanges(Loan loan)
{
 1 * loan.setApproved(true)
 0 * loan.setAmount(_)
 0 * loan.setYears(_)
}

private void loanDetailsWereExamined(Loan loan)
{
 _ * loan.getYears() >> 5
 _ * loan.getAmount() >> 200.000
 _ * loan.getContactDetails() >> new ContactDetails()
}

You’ve created two helper methods and added a then: block. The first helper method
holds the primary checks (the approval of the loan with its original values). The other
helper method is secondary, as it contains the stubbed methods of the loan object
(which are essential for the test but not as important as the approval/rejection status
of the loan).

 The important thing to understand in this listing is that you wrap each helper
method in an interaction block:

interaction {
 loanDetailsWereExamined(loan)
 }

This is needed so that Spock understands the special format of the N * class.method
(N) interaction check, as shown in chapter 6. Spock automatically understands this for-
mat in statements found directly under the then: block, but for helper methods you
need to explicitly tell Spock that statements inside the method are interaction checks.

Constructing a custom DSL for your testing needs

The Groovy language is perfect for creating your own domain-specific language (DSL)
that matches your business requirements. Rather than using simple helper methods,
you can take your Spock tests to the next level by creating a DSL that matches your
business vocabulary. Creating a DSL with Groovy is outside the scope of this book,
so feel free to consult chapter 19 of Groovy in Action, Second Edition, by Dierk Koenig
et al. (Manning Publications, 2015) for more information on this topic.

Interaction blocks are
needed for helper methods
that contain mocks.

lper methods
ed after the
siness check
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

245Creating partial mocks with spies
8.3 Creating partial mocks with spies
In this section you’ll see how to create partial mocks.8 Chapter 6 explained how Spock
can create fake objects that are useful for testing and showed you mocks and stubs.
Spock supports a third type of “fake” object: spies.

 Spies, shown in figure 8.5, work as partial mocks. They take over a Java object and
mock only some of its methods. Method calls can either by stubbed (like mocks) or
can pass through to the real object.

 I purposely didn’t show you spies in chapter 6 because they’re a controversial tech-
nique that implies problematic Java code. They can be useful in a narrow set of cases.
Their primary use is in creating unit tests for badly designed production code that
can’t be refactored (a common scenario with legacy code).

8.3.1 A sample application with special requirements

Let's see an example that’s well-suited for writing a Spock test with spies instead of
mocks/stubs. Say you’re tasked with the development of unit tests for an existing Java
application. The Java application in question is a security utility that gets video feed
from an external camera, and upon detecting intruders, deletes all files of the hard
drive (to hide incriminating evidence).

 The application code is implemented by two Java classes. The first class is responsi-
ble for deleting the hard drive, and the second class implements the face-recognition
algorithms that decide whether the person in front of the camera is a friend or enemy,
as shown in the next listing.

public class CameraFeed {

 [...code redacted for brevity...]

 public void setCurrentFrame(Image image){
 [...code redacted for brevity...]
 }
}

8 And why you shouldn’t use them!

Listing 8.23 Java code with questionable design

Java
class

Mock/
stub

Spy

Partial fakeFakeReal object

Figure 8.5 A spy is a real
class in which only a subset
of methods are fake. The rest
are the real methods.

Gets frames from
video camera
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

246 CHAPTER 8 Spock features for enterprise testing

Imm
del
ha e-
public class HardDriveNuker {

 public void deleteHardDriveNow(){
 [...code redacted for brevity...]
 }
}
public class SmartHardDriveNuker extends HardDriveNuker{

 public void activate(CameraFeed cameraFeed){
 [...code redacted for brevity...]
 }
}

You should instantly see the flawed design of this Java code. Figure 8.6 provides an
overview.

 The application doesn’t use dependency injection. Instead of splitting responsibil-
ities into separate entities, the application contains both the logic of deletion and the
face recognition in a single “object.”

 You see this design flaw and start refactoring the application in order to write your
unit tests. Unfortunately, your boss says that the binary application is digitally signed,
and changing even the slightest thing in the source code will create an invalid signa-
ture.9 Your boss adds that even if you successfully refactor the code, your department

9 My example is a bit extreme. Usually code can’t be changed for political reasons.

Responsible for
hard disk deletion

ediately
etes the
rd drive Contains complex imag

recognition logic

Calls deleteHardDriveNow()
behind the scenes

Face detection
from video

camera

Deletes
hard drive

SmartHardDriveNuker.java

CameraFeed

HardDriveNuker.java

Figure 8.6 Hard drive deletion logic is hidden inside the face-recognition logic
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

247Creating partial mocks with spies

class

Mo
da

meth
other m
doesn’t have access to the digital certificate, so you couldn’t re-sign the binary after
your change.

 You need to write a unit test with the source code as is. You’re asked to examine
the effectiveness of the face-recognition software by using images of both kinds (those
that have a threat and those that don’t). This is one of the rare occasions that spies
can be employed for unit testing.

8.3.2 Spies with Spock

You need to write a unit test that examines the activate() method of the SmartHard-
DriveNuker class. You know that behind the scenes it calls the deleteHardDriveNow()
method. It wouldn’t be realistic to delete your hard drive each time you write a unit
test that triggers the face-recognition logic. You need to find a way to mock the dan-
gerous method while the real method of the face-recognition logic is kept as is.

 Spock supports the creation of spies, as shown in the next listing. A spy is a fake
object that automatically calls the real methods of a class unless they’re explicitly
mocked.

def "automatic deletion of hard disk when agents are here"() {
 given: "a camera feed"
 CameraFeed cameraFeed = new CameraFeed()

 and: "the auto-nuker program"
 SmartHardDriveNuker nuker = Spy(SmartHardDriveNuker)
 nuker.deleteHardDriveNow() >> {println "Hard disk is cleared"}

 when:"agents are knocking the door"
 cameraFeed.setCurrentFrame(ImageIO.read(getClass().getResourceAsStream(
 "agents.jpg")))
 nuker.activate(cameraFeed);

 then: "all files of hard drive should be deleted"
 1 * nuker.deleteHardDriveNow()
}

Here you create a spy of your class under test. By default, after creation, all methods
are real and pass through to the real object.10 Then you specifically mock the method
that deletes the hard drive. But the method that employs the face-recognition logic is
still the real one.

 When the activate() method is called, it runs its real code (so you can pass it dif-
ferent images and test the effectiveness of the face-recognition code). In the case of
an image that represents a “threat” and so triggers the hard drive deletion process,
you know that the mocked method will be called (and thus your hard drive is safe).

Listing 8.24 Creating a spy with Spock

10 Creating a spy without mocking any method is the same as using the object itself—not very exciting.

Creates a spy for the
SmartHardDriveNuker

cks the
ngerous
od—all
ethods

are real
Real face-recognition
code runs

Examines the mocked method
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

248 CHAPTER 8 Spock features for enterprise testing
 This listing shows only one test, but in reality you’d need to write a parameterized
test with multiple images that examines the behavior of the face-recognition code.

8.3.3 The need for spies shows a problematic code base

Spies are used for legacy code primarily because of the bad quality of legacy code.11

Well-designed code doesn’t ever need spies in the first place. Figure 8.7 shows a flow
diagram of using spies that you should keep in your head at all times. The diagram
isn’t specific to Spock. It applies to all testing frameworks (including Mockito).

In the example of the security utility, a spy is essential because the Java code doesn’t
use dependency injection. This is just one of the code smells of badly designed code.
Java code that comes as a big ball of mud,12 breaks the SOLID principles,13 contains
God14 objects, and generally suffers from big design flaws isn’t directly testable with
mocks/stubs, and spies are needed.

 In those cases, you should resist the temptation to write a Spock test with spies and
instead refactor the code before writing your unit tests. You’ll find that in most cases
(if not all), spies aren’t needed after the refactoring is complete.

8.3.4 Replacement of spies with mock

You use spies with the security utility because you can’t refactor the Java code first, as
this would invalidate the digital signature of the binary. If that constraint didn’t hold,

11 A universal fact: legacy code is always badly designed code.
12 https://en.wikipedia.org/wiki/Big_ball_of_mud
13 https://en.wikipedia.org/wiki/SOLID_(object-oriented_design)
14 https://en.wikipedia.org/wiki/God_object

No Yes

Can
you refactor
your Java

code?

You think you
need to use spies

Use spies Refactor it?

Use mocks/stubs

You improved the
design of your code!

Your Java code
is not OOP

Figure 8.7 Spies can always be replaced
with mocks in well-designed code.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

https://en.wikipedia.org/wiki/Big_ball_of_mud
https://en.wikipedia.org/wiki/SOLID_(object-oriented_design)
https://en.wikipedia.org/wiki/God_object

249Creating partial mocks with spies

Code r
com

Mock is
as a dep
you’d instead modify the Java code to properly use dependency injection. An obvious
decoupling of dependencies is shown in the following listing.

public class SmartHardDriveNuker{

 private final HardDriveNuker hardDriveNuker;

 public SmartHardDriveNuker(final HardDriveNuker hardDriveNuker)
 {
 this.hardDriveNuker = hardDriveNuker;
 }

 public void activate(CameraFeed cameraFeed)
 {
 [...code redacted for brevity..]
 hardDriveNuker.deleteHardDriveNow();
 [...code redacted for brevity..]
 }

}

Here you refactor your Java code to use composition instead of inheritance. You also
introduce the “dangerous” hard drive deletion code as an external dependency. After
this refactoring, you can rewrite your unit test by using a normal mock, as shown in
the next listing.

def "automatic deletion of hard disk when agents are here"() {
 given: "a camera feed and a fake nuker"
 CameraFeed cameraFeed = new CameraFeed()
 HardDriveNuker nuker = Mock(HardDriveNuker)

 and: "the auto-nuker program"
 SmartHardDriveNuker smartNuker = new SmartHardDriveNuker(nuker)

 when:"agents are knocking the door"
 cameraFeed.setCurrentFrame(ImageIO.read(getClass().getResourceAsStream(
 "agents.jpg")))
 smartNuker.activate(cameraFeed);

 then: "all files of hard drive should be deleted"
 1 * nuker.deleteHardDriveNow()
}

If you’ve read chapter 6, the code in listing 8.26 should be easy to understand.
Because you’ve refactored the Java code and hard drive deletion is now an external
dependency, you can mock that class and pass it the face-recognition code. This way,

Listing 8.25 Refactoring Java code to avoid spies

Listing 8.26 Using a mock instead of a spy

No inheritance is used.

euse via
position

Gets hard drive nuker via
constructor injection

Calls the dangerous method
of the external dependency

Uses a mock
instead of a spy

 passed
endency

Calls the mocked nuker
class behind the scenes

Examines the interaction
of the mock
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

250 CHAPTER 8 Spock features for enterprise testing
your class under test—SmartHardDriveNuker—is a real one, and a mock is used for
the collaborator class: HardDriveNuker.

 The end result is that no spies are used. What you need to take away from this sec-
tion of the book is that despite Spock support for spies, you should avoid using them,
and instead spend time improving the design of your code so that spies aren’t needed.

 And with that knowledge about spies, we conclude this book! You can now put it
down and go write your own Spock tests!

8.4 Summary
■ You can create Spock tests that will pass if a certain exception is thrown.
■ You can explicitly define the type of exception and perform assertions on it to

refine the conditions for passing a test when an exception is thrown.
■ The @Issue annotation can be used for documentation (and possibly report-

ing) purposes on a Spock test. Use it to show which issue is verified by a Spock
test.

■ Spock supports the @Timeout annotation that will forcibly fail a test if it takes
too long.

■ You can ignore specific Spock tests. They will be skipped by the Spock runner.
■ You can automatically skip Spock tests according to the running environment.

Tests can be skipped under specific operating systems, JVM configuration, sys-
tem properties, environment variables, and any other custom code you can
implement yourself.

■ The @AutoCleanup annotation automatically releases resources at the end of a
Spock test, even if the test has failed. This is an alternative to the cleanup:
block and/or the cleanup()/cleanupSpec() methods.

■ All Spock blocks (the when: block in particular) should be short and concise.
Large code segments should be extracted into helper methods.

■ Helper methods for assertions need to use the assert keyword or the with()
method (otherwise, Spock can’t understand that the code is Groovy assertions).

■ Helper methods for interactions should be wrapped in an interaction block
(otherwise, Spock can’t understand the special syntax used for interaction veri-
fication).

■ Spies in Spock offer the possibility of partial mocking. A spy can mock some
methods of an object while leaving the rest of the methods in the original
implementation.

■ Spies are an advanced feature that should be used mostly in legacy code that
can’t be refactored. Spy usage inside Spock tests should be minimal.

■ The presence of Spock spies usually indicates badly designed production code.
Refactoring the code should make spies redundant.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

appendix A
Installing Spock

This appendix explains how to install and begin using Spock in your Java project
(even when you already have existing JUnit tests). It also covers installation of
Groovy support in popular development environments and how to best use the
source code for the book.

 I assume you already have a Java project (that you want to write Spock tests for)
and so have the following available:

■ Java development Kit (www.oracle.com/technetwork/java/javase/downloads
/index.html)

■ Maven build system (http://maven.apache.org/) or Gradle build system
(https://gradle.org/)

■ Your favorite Integrated Development Environment (for example, Eclipse)

A.1 Optional Groovy installation
First, let’s get a big misunderstanding out of the way. It’s perfectly possible to use
Spock in your Java project without installing Groovy itself. It’s nice to have the Groovy
tools available for quick tests and small scripts, but they’re by no means necessary.

 To install Groovy, go to http://groovy-lang.org/download.html and follow the
instructions for your operating system. The easiest way is to download the zip file,
extract it in a directory of your choice, and set your PATH variable accordingly.

 After installing Groovy, you should have the following commands available:

■ groovyc—Groovy compiler. Apart from simple tests, you typically don’t use
this directly.

■ groovy—Groovy runner. You can use this to run individual Groovy scripts.
■ groovysh—Groovy shell. This is an interactive way to run Groovy statements.
■ groovyconsole—Graphical Groovy console. This is the recommended way

to start your Groovy journey because it provides a friendly GUI application
you can use to evaluate Groovy statements.
251

Licensed to Stephanie Bernal <nordicka.n@gmail.com>

www.oracle.com/technetwork/java/javase/downloads/index.html
www.oracle.com/technetwork/java/javase/downloads/index.html
http://maven.apache.org/
https://gradle.org/
http://groovy-lang.org/download.html

252 APPENDIX A Installing Spock
A.2 Choosing a Spock version
At the time of this writing, Spock has the following versions:

■ Spock 1.0-groovy2.4
■ Spock 1.0-groovy2.3
■ Spock 1.0-groovy2.0

All versions are available in Maven Central (http://search.maven.org/) and are pro-
duction-ready. The Groovy versions have little effect on Java projects. If you want to
add Spock to a Groovy project, choose the matching Groovy version. In the sample
code of this book, I chose the Spock version for Groovy 2.4 because it’s the latest at
the time of writing.

A.3 Master example for Maven, Ant, and Gradle
Your first stop regarding Spock installation should be the Spock-example GitHub
repository (https://github.com/spockframework/spock-example). This full project
with Spock tests contains build files for Gradle, Maven, and Ant (depending on your
build system, you may not need all of them). All my instructions for the next sections
are extracted from this project.

 All code listings in this appendix are segments of the pom.xml file located in that
repository. I summarize the instructions for Maven and Gradle.1 I assume that you
already have a Java project up and running and you want to add Spock tests.

A.3.1 Spock with Maven

If you use Maven, add the code in the following listing to your pom.xml file in the
Build > Plugins section.

<plugin>
 <groupId>org.codehaus.gmavenplus</groupId>
 <artifactId>gmavenplus-plugin</artifactId>
 <version>1.4</version>
 <executions>
 <execution>
 <goals>
 <goal>compile</goal>
 <goal>testCompile</goal>
 </goals>
 </execution>
 </executions>
</plugin>
<plugin>
 <artifactId>maven-surefire-plugin</artifactId>

1 Ant isn’t a build system. It’s a relic of the past and should die in flames. If you’re starting a new Java project
with Ant, please bang your head against the wall now.

Listing A.1 Adding Groovy support in Maven
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

https://github.com/spockframework/spock-example
http://search.maven.org/

253Master example for Maven, Ant, and Gradle
 <version>2.6</version>
 <configuration>
 <useFile>false</useFile>
 <includes>
 <include>**/*Spec.java</include>
 <include>**/*Test.java</include>
 </includes>
 </configuration>
</plugin>

This sets up Groovy support in Maven and Surefire. In pom.xml, in the dependency
section, add the code shown in the next listing.

<dependency>
 <groupId>org.spockframework</groupId>
 <artifactId>spock-core</artifactId>
 <version>1.0-groovy-2.4</version>
 <scope>test</scope>
</dependency>
<dependency> <!-- enables mocking of classes
 (in addition to interfaces) -->
 <groupId>cglib</groupId>
 <artifactId>cglib-nodep</artifactId>
 <version>3.1</version>
 <scope>test</scope>
</dependency>
<dependency> <!-- enables mocking of classes without default
 constructor (together with CGLIB) -->
 <groupId>org.objenesis</groupId>
 <artifactId>objenesis</artifactId>
 <version>2.1</version>
 <scope>test</scope>
</dependency>

That’s it. Now you can build Spock tests via Maven. Running mvn test from the same
directory where the pom file exists should correctly detect and run your Spock tests
(assuming they all have names that end in *Spec, as I show in the book).

A.3.2 Spock with Gradle

If you use Gradle in your Java project, things are even simpler. Groovy compilation is
already taken care of, and you only need the Spock dependencies in your build.gradle
file, as shown in the next listing.

dependencies {

 [....other dependencies here...]
// mandatory dependencies for using Spock

Listing A.2 Adding Spock dependencies in Maven

Listing A.3 Gradle settings for Spock
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

254 APPENDIX A Installing Spock
 compile "org.codehaus.groovy:groovy-all:2.4.1"
 testCompile "org.spockframework:spock-core:1.0-groovy-2.4"

// optional dependencies for using Spock
 testRuntime "cglib:cglib-nodep:3.1" // allows mocking of classes
 (in addition to interfaces)
 testRuntime "org.objenesis:objenesis:2.1" // allows mocking of classes
 without default constructor (together with CGLIB)
}

In addition, make sure that you already use Maven Central, as the following listing
shows.

repositories {
 // Spock releases are available from Maven Central
 mavenCentral()
}

Now you’re ready to use Spock from the command line. Running gradle test from
the same directory that holds the build.gradle file will run all Spock tests.

A.3.3 Spock in an enterprise environment

If you want to use Spock inside a company that has a binary repository like Nexus
(www.sonatype.org/nexus/) or Artifactory (www.jfrog.com/open-source/), you
should consult their documentation on how to use them as a proxy for Maven Cen-
tral. Talk with the administrator of these repositories for guidance on company poli-
cies regarding external library usage.

 Let’s see how IDEs handle Spock support.

A.4 Spock tests in your IDE
Because Spock tests are in Groovy, the support of Spock in your IDE will be as good as
the existing support for Groovy. As explained previously, you don’t need to install
Groovy support in your IDE in order to run Spock tests. It’s a nice-to-have feature
because of its syntax highlighting and autocomplete facilities. The only thing specific
to Spock is the test output result that should be set up to use a fixed-width font so that
failure messages show up properly. For more information, see http://www.groovy-
lang.org/ides.html. I use Eclipse, but Groovy is supported on most major environ-
ments.

A.4.1 Spock in Eclipse

To gain Groovy support in Eclipse, install either the vanilla Groovy plugin or the full-
featured Groovy/Grails plugin. Both can be found in the Eclipse marketplace, as
shown in figure A.1. The Eclipse marketplace is accessible from the Help > Market-
place menu.

Listing A.4 Gradle settings for Spock repository
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

http://www.sonatype.org/nexus/
http://www.jfrog.com/open-source/
http://www.groovy-lang.org/ides.html
http://www.groovy-lang.org/ides.html

255Spock tests in your IDE

Once you do that, Groovy/Spock files will gain syntax highlighting and autocomplete
support, as shown in figure A.2.

 You can still use the Maven/Gradle commands to compile and run Spock tests.

Figure A.1 Eclipse plugins for Groovy

Figure A.2 Groovy
support in Eclipse
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

256 APPENDIX A Installing Spock
There’s also a plugin dedicated to Spock, but upon installing it, I haven't noticed any
additional functionality (it also depends on the Groovy plugin, so it isn’t a true alter-
native). You can find it in the Eclipse marketplace, as shown in figure A.3.

A.4.2 Spock in the IntelliJ IDE

Groovy support in IntelliJ IDEA is built in, so there’s no need to download an external
plugin. You need only to enable it, as shown in figure A.4.

 When the Groovy plugin is enabled, you gain syntax highlighting and autocom-
plete in Groovy files, as shown in figure A.5.

Figure A.3 Jspresso Spock plugin (optional)

Figure A.4 Enabling Groovy support in IntelliJ Figure A.5 Groovy support in IntelliJ IDEA
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

257How to use the source code of this book
Again, as with Eclipse, you can still use the command-line Maven/Gradle commands
to compile and run Spock tests. A dedicated Spock plugin for IntelliJ IDEA adds extra
optional goodies, such as syntax highlighting for Spock labels (see figure A.6).

 Again, this is something that’s nice to have, but is not otherwise essential for run-
ning Spock tests.

A.4.3 Spock in NetBeans

I haven’t tried NetBeans with Groovy, but it also supports Groovy. See https://
netbeans.org/features/groovy/ for more details.

A.5 How to use the source code of this book
All the source code is located at https://github.com/kkapelon/java-testing-with-
spock. Each chapter is an independent Maven project. You can check out any chapter
by itself and run the command mvn test (or mvn verify) to run all Spock/JUnit tests.
You need an active internet connection so that all dependencies are downloaded. You
can obtain the code in multiple ways:

■ If you’re not familiar with Git and/or GitHub, you can download all the code as
a zip file from https://github.com/kkapelon/java-testing-with-spock/archive/
master.zip.

■ If you’re familiar with Git, you can also clone the https://github.com/
kkapelon/java-testing-with-spock.git repository by using your favorite Git client.

■ If you already have a GitHub account and know how GitHub works, you can
directly fork the repository or download it locally with the GitHub client.

Feel free to import any chapter into your favorite IDE (as a Maven project) to examine
the code more thoroughly. All code listings of the book are shown in the GitHub

Figure A.6 IntelliJ plugin for Spock
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

https://netbeans.org/features/groovy/
https://netbeans.org/features/groovy/
https://github.com/kkapelon/java-testing-with-spock/archive/master.zip
https://github.com/kkapelon/java-testing-with-spock/archive/master.zip
https://github.com/kkapelon/java-testing-with-spock
https://github.com/kkapelon/java-testing-with-spock
https://github.com/kkapelon/java-testing-with-spock.git
https://github.com/kkapelon/java-testing-with-spock.git

258 APPENDIX A Installing Spock
repository; figure A.7 shows an example. You can click any of them, and you’ll be
transferred directly to the respective source file.

 I’ve set up continuous integration on the GitHub page. Seeing the current status
of the code at the front page is easy.

A.6 How to use the chapter code in Eclipse
Here I provide step-by-step instructions on how to import a chapter in Eclipse and run
a Spock test. This section refers to chapter 1, but all chapters work in the same way.

 Check out the source code and place it somewhere on your local filesystem.2 Then,
from Eclipse, choose File > Import and select a Maven project, as shown in figure A.8.

2 Your Eclipse workspace is a good place as it will make things easier.

Figure A.7 Code listings with links in the home page of the GitHub repository

Figure A.8 Importing as a
Maven project
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

259How to use the chapter code in Eclipse
Navigate to the folder that contains the chapter code and click the Finish button in
the dialog box that appears, as shown in figure A.9.

 Eclipse will attempt to find connectors for the Gmaven-plus plugin and will fail
because this plugin is fairly new (see figure A.10). Choose to ignore this (it won’t
affect your build in any way). When you work with cutting-edge technology like Spock,
your IDE can’t keep up with you!

Figure A.9 Locating the pom file

Figure A.10 Ignoring
Eclipse warnings
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

260 APPENDIX A Installing Spock
Next, make sure that the src/test/groovy directory is handled as a source directory, as
shown in figure A.11:

■ Right-click the project in Eclipse and select Properties (the last item on the
menu). In the dialog box that appears, click Java Build Path.

■ Click the Add Folder button.
■ If the test/groovy directory isn’t already included, check it yourself.

To build the project, you can run mvn test from the command line. Alternatively, in
Eclipse, you can choose “Maven test” from the project right-click menu, as shown in
figure A.12.

 Then you can individu-
ally run any Spock test
exactly as you would run a
JUnit test (by right-clicking
it), as shown in figure A.13.

Figure A.11 Ensuring that Eclipse handles src/test/groovy correctly

Figure A.12 Running the Maven build

Figure A.13 Running a Spock test in Eclipse
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

261How to use the chapter code in IntelliJ IDEA
The results of the test appear in
the JUnit console, as shown in fig-
ure A.14.

A.7 How to use the chapter
code in IntelliJ IDEA
As with Eclipse, this section pro-
vides instructions on how to use
chapter 1 in IntelliJ IDEA. Repeat
the process for each chapter. In
the opening screen of IntelliJ
IDEA, choose to import a new
project and navigate to the
source code in your filesystem, as
shown in figure A.15.

 You’re presented with a series
of wizard screens. Accept the
defaults. Make sure the project is
imported as a Maven project, as
shown in figure A.16.

Figure A.15 Importing a project
in IntelliJ IDEA

Figure A.14 Results of a Spock test

Figure A.16 Importing
as a Maven project
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

262 APPENDIX A Installing Spock
After the import is finished, find the Maven
Goals window (located at the top right) and
double-click the “test” goal as shown in fig-
ure A.17. This builds the whole project. As
an alternative, you can run the command
mvn test from the same folder that con-
tains the pom.xml file of the chapter.

 As with Eclipse, you need to mark the
src/test/groovy folder as a source folder.
Right-click the folder and choose Mark
Directory As > Test Sources Root, as shown
in figure A.18.

Finally, you can run any Spock test as you run JUnit (via the right-click menu), as
shown in figure A.19.

 The results appear in the JUnit console. See figure A.20.

A.8 Other resources
Many other resources are available:

■ Spock web page: http://spockframework.org/
■ Spock mailing list: https://groups.google.com/forum/#!forum/spockframe

work
■ Spock documentation:http://docs.spockframework.org
■ Spock at Stack Overflow: http://stackoverflow.com/questions/tagged/spock
■ Spock at GitHub: https://github.com/spockframework

Figure A.17 Maven goals inside IntelliJ IDEA

Figure A.18 Instructing IntelliJ to
handle Spock folders

Figure A.19 Running a Spock test inside IntelliJ Figure A.20 Results of a Spock test
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

http://docs.spockframework.org
http://spockframework.org/
https://groups.google.com/forum/#!forum/spockframework
https://groups.google.com/forum/#!forum/spockframework
http://stackoverflow.com/questions/tagged/spock
https://github.com/spockframework

appendix B
External Spock extensions

and related tools

The official Spock source code found at https://github.com/spockframework/
spock contains the core framework, along with extensions for Spring, Guice, Tapes-
try, and Unitils. Because of the extensible nature of Spock, several other extensions
are available outside this repository created by the community.

 This appendix presents several Spock extensions created by external contribu-
tors that may help your unit tests. Additionally, it covers several other unit-testing
projects that play well with Spock or even have explicit support for it.

 It’s your responsibility to examine each of these projects and evaluate them for
your needs. With the recent release of version 1.0 of Spock, more people will be
writing extensions. The number of available Spock extensions will have grown by
the time you’re reading this book.

B.1 Detailed Spock reporting
As already mentioned, the Spock test runner is compatible with the JUnit runner,
so all JUnit reporting tools will work normally for Spock tests as well.

 To fully exploit Spock capabilities, you can also use Spock Reports (https://
github.com/renatoathaydes/spock-reports). This project can create test reports
with all the finer details of Spock tests. It renders the text of block descriptions and
supports the documentation annotations (such as @Title), as shown in figure B.1.

 The project can be run either with Maven or Gradle, so regardless of your build
system, you can easily create these reports with minimal effort. At the time of writ-
ing, the binaries are not yet released to Maven central, so you need to add an exter-
nal repository to your pom file.
263

Licensed to Stephanie Bernal <nordicka.n@gmail.com>

https://github.com/allure-framework/allure-spock-adaptor
https://github.com/spockframework/spock
https://github.com/spockframework/spock
https://github.com/renatoathaydes/spock-reports
https://github.com/renatoathaydes/spock-reports

264 APPENDIX B External Spock extensions and related tools
B.2 Gradle-style Spock reports
Another project dedicated to Spock reporting is Damage Control, found at https://
github.com/damage-control/report. Again, it focuses on creating detailed Spock
reports. The output is similar to the Gradle style for test reports, shown in figure B.2.

 You can use damage-control reports either with Maven or Gradle. The library is
already in Maven Central, so using it in your own projects is easy.

@Title Spock
annotation

Figure B.1 Spock reports that show given-when-then labels and Spock annotations

Figure B.2 Damage-control example report
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

https://github.com/damage-control/report
https://github.com/damage-control/report

265Spock-Arquillian test runner

Pers
paramet
B.3 Spock Genesis
Spock Genesis (https://github.com/Bijnagte/spock-genesis) is a meta data-generator
library for parameterized Spock tests. I briefly mentioned it at the end of chapter 5. At
its core, Spock Genesis can be used as a data source for Spock tests. The following list-
ing is an example directly from Spock Genesis’ own samples.

static class Person {
 int id
 String name
 String title
 Date birthDate
 char gender
 }

 def 'complex pogo'() {
 expect:
 person instanceof Person
 person.gender in ['M', 'F', 'T', 'U'].collect { it as char }
 person.id > 199
 person.id < 10001
 person.birthDate >= Date.parse('MM/dd/yyyy', '01/01/1940')
 person.birthDate <= new Date()

 where:
 person << Gen.type(Person,
 id: Gen.integer(200..10000),
 name: Gen.string(~/[A-Z][a-z]+([A-Z][a-z]+)?/),
 birthDate: Gen.date(Date.parse('MM/dd/yyyy',
 '01/01/1940'), new Date()),
 title: Gen.these('', null).then(Gen.any('Dr.', 'Mr.',
 'Ms.', 'Mrs.')),
 gender: Gen.character('MFTU')
).take(3)
 }

Spock Genesis can work as an abstraction over existing data generators, as it can also
do the following:

■ Compose existing generators into new ones
■ Filter existing generators using predicates/closures
■ Randomize or order the output for other generators

You’ll find Spock Genesis particularly useful if you’re creating a scientific application
in Java and want to cover a large amount of data variations in your unit tests.

B.4 Spock-Arquillian test runner
As mentioned in chapter 7, Spock only includes support for Spring and Guice in its
core distribution, as far as containers are concerned. Spock-Arquillian (https://
github.com/arquillian/arquillian-testrunner-spock) is a community extension that

Listing B.1 Creating test data with Spock Genesis

A Person class that
will be tested

Mass creation of
on objects with all
ers of each domain

Parameters for
created objects
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

https://github.com/Bijnagte/spock-genesis
https://github.com/arquillian/arquillian-testrunner-spock
https://github.com/arquillian/arquillian-testrunner-spock

266 APPENDIX B External Spock extensions and related tools

par

Po
J

allows Spock tests to bootstrap the Arquillian (http://arquillian.org/) test container.
Arquillian is commonly used for integration testing of Java EE applications. The next
listing is an example from the Spock-Arquillian website.

@Deployment
def static JavaArchive "create deployment"() {
 return ShrinkWrap.create(JavaArchive.class)
 .addClasses(AccountService.class, Account.class,
 SecureAccountService.class)
 .addAsManifestResource(EmptyAsset.INSTANCE, "beans.xml");
}

@Inject
AccountService service

def "transferring between accounts should result in account withdrawal and
 deposit"() {
 when:
 service.transfer(from, to, amount)

 then:
 from.balance == fromBalance
 to.balance == toBalance

 where:
 from << [new Account(100), new Account(10)]
 to << [new Account(50), new Account(90)]
 amount << [50, 10]
 fromBalance << [50, 0]
 toBalance << [100, 100]
}

Notice that the class containing the Arquillian code must be annotated with the @Run-
With(ArquillianSputnik) annotation in order to successfully run the code shown in
the listing.

B.5 Using PowerMock with Spock
Chapter 6 briefly discusses PowerMock (https://github.com/jayway/powermock) as a
way to mock static/private methods, a capability that Spock doesn’t have on its own.

 I consider the use of PowerMock an antipattern. You should use it only as a last
resort in your unit tests and only when it’s impossible to refactor the Java code under
tests. If you end up using PowerMock with Spock, you should look at the Spock-Power-
Mock project (https://github.com/kriegaex/Spock_PowerMock) that combines the
two. The following listing shows an example taken from the project web page.

@PrepareForTest([Person.class])
class PersonTest extends Specification {
 @Rule PowerMockRule rule = new PowerMockRule();

Listing B.2 Using Spock and Arquillian together

Listing B.3 Using Spock and PowerMock together

Annotations
from Arquillian

Standard CDI injection

Spock
ameterized

test

PowerMock annotationwerMock
Unit rule
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

http://arquillian.org/
https://github.com/jayway/powermock
https://github.com/kriegaex/Spock_PowerMock

267Spock InjectMocks extension

S
on

At th
mock has b

in the
test au
 private static Person person = new Person("Kriegisch", "Alexander", new
 Date(1971 - 1900, 5 - 1, 8))

 def "Person properties"() {
 expect:
 person.getLastName() == "Kriegisch"
 person.getFirstName() == "Alexander"
 person.getDateOfBirth().getYear() == 71
 }
}

Spock is backward-compatible with JUnit rules and therefore gets its PowerMock sup-
port indirectly by the PowerMock JUnit rule (which allows PowerMock usage inside
the code of a unit test).

B.6 Spock InjectMocks extension
In a complex unit test in which the class under test is using many other mocks (imag-
ine an EJB class that uses other EJBs), it might be tedious to inject all mocks one by
one using the respective setters.

 The Spock Collaborators extension (https://github.com/marcingrzejszczak/
spock-subjects-collaborators-extension) can be used to automatically inject these
dependencies (in a similar manner to Spring automatic injection1) by type. Both con-
structor and setter injection are supported.

 Using the extension is as simple as annotating the class under test with @Subject
(which is different from the annotation already supported by Spock), and the mocks
to be injected with the @Collaborator annotation. After the Spock test runs, you’ll
know that all classes marked with the latter annotation will be injected into the class
marked with the former. You should have exactly one class marked with @Subject, and
one or more classes marked with @Collaborator in each Spock specification.

 Here’s the example shown on its web page.

@Collaborator
SomeOtherClass someOtherClass = Mock()

@Subject
SomeClass systemUnderTest

def "should inject collaborator into subject"() {
 given:
 someOtherClass.someMethod() >> "I am a mock"

 when:
 String firstResult = systemUnderTest.someOtherClass.someMethod()

1 The Spock extension is inspired by the Mockito @InjectMocks annotation.

Listing B.4 Automatic injection of mocks

Class under test that’s
both private and static

pock assertions
 the private/stat

This is a Spock mock that
needs to be injected.

This annotation comes
from the extension.

Collaborator mock is like
any other Spock mock.

is point the
een injected
 class under
tomatically.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

https://github.com/marcingrzejszczak/spock-subjects-collaborators-extension
https://github.com/marcingrzejszczak/spock-subjects-collaborators-extension

268 APPENDIX B External Spock extensions and related tools
 then:
 firstResult == "I am a mock"
 systemUnderTest.someOtherClass == someOtherClass
}

If you want to use this extension, make sure that the @Subject annotation is imported
with com.blogspot.toomuchcoding.spock.subjcollabs.Subject instead of the stan-
dard spock.lang.Subject that’s used by core Spock for documentation purposes, as
described in chapter 4.

 The code can be found in Maven central and is therefore easy to use in your own
Java project.

B.7 Spock Retry extension
In an ideal world, all your integration/functional tests would run in a deterministic way.
In reality, this isn’t always possible. Slow external systems, database bottlenecks, network
load, and other undesirable factors can sometimes affect the result of a test (especially
if you’ve marked it with the @Timeout annotation) in a semirandom manner.

 I’ve worked on projects where a failed build doesn’t mean that the code is broken,
but that the network is congested (and rebuilding the code will make all tests pass). For
those cases, you can save yourself some time by using the Spock Retry extension
(https://github.com/anotherchrisberry/spock-retry). It offers you a special annota-
tion that gives a second chance to your Spock test if it fails, as shown in the next listing.

class ExampleSpec extends Specification {

 @RetryOnFailure
 def "a brittle Spock test"() {
 [...implementation of Spock test here...]
 }
}

The annotation can also be used on the class level so that all feature methods gain this
capability. By default, the test will be retried twice. You can change this value in the
annotation itself, as the following listing shows.

@RetryOnFailure(times=3)
class ExampleSpec extends Specification {

 def "a brittle Spock test"() {
 [...implementation of Spock test here...]
 }
 def "another brittle Spock test"() {
 [...implementation of Spock test here...]
 }

}

Listing B.5 Fail a test only if it fails twice

Listing B.6 Fail all tests after three tries

Will try to run twice
before failing

Gives three chances
to a failed test
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

https://github.com/anotherchrisberry/spock-retry

269Spock dbUnit extension

Inser
the US

b

Inse
th
At the time of writing, this Spock extension isn’t yet in Maven Central, so you must
either build it yourself or find another repository that contains it.

B.8 Spock dbUnit extension
Chapter 7 shows how to use the Groovy SQL package to preload your database with
test data needed for the Spock test. If you like this approach, you can take it a step fur-
ther with the Spock dbUnit extension (https://github.com/janbols/spock-dbunit).

 The extension is based on the well-known DbUnit library (http://dbunit.source
forge.net/), initially developed for JUnit, that can initialize a database to a known
state, reading data from XML files. The Spock dbUnit extension allows you to use
Groovy code instead of XML files, as shown in the following listing.

class MyDbUnitTest extends Specification{

DataSource dataSource

 @DbUnit
 def content = {
 User(id: 1, name: 'John', createdOn: '[NOW]')
 }

Data on the DB is saved via a data source, which can be created by hand, or—even bet-
ter—injected by Spring test, as shown in the next listing.

@ContextConfiguration(locations='classpath:/spring/context.xml')
class DatasourceFromSpringTest extends Specification{

 @Autowired
 DataSource dataSource

 @DbUnit
 def content = {
 User(id: 1, name: 'John')
 }

 def setup(){
 new Sql(dataSource).execute("CREATE TABLE User(id

 INT PRIMARY KEY, name VARCHAR(255))")
 }

 def cleanup() {
 new Sql(dataSource).execute("drop table User")
 }

 def "test"() {
 when:
 def result = new Sql(dataSource).firstRow("select * from User
 where name = 'John'")

Listing B.7 Fail all tests after three tries

Listing B.8 Using dbUnit Spock with Spring

This data source is
used for data writing.

This method runs
before the Spock test.t data on

ER table.

A Spring context
that contains a

data source

Injected
y Spring

This method will run
before the test.

rts data into
e User table

Creates the initial schema

DB is preloaded with
data at this point.
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

https://github.com/janbols/spock-dbunit
http://dbunit.sourceforge.net/
http://dbunit.sourceforge.net/

270 APPENDIX B External Spock extensions and related tools

L

 then:
 result.id == 1
 }
}

At the time of writing, this Spock extension is only in JCenter (https://bintray.com/
bintray/jcenter), not Maven Central, so you must either build it yourself or configure
JCenter in your pom.xml.

B.9 Spock Android extension
Android Java is not 100% compatible with desktop Java. Vanilla Spock can’t run
unmodified on Android because the mocking libraries it uses don’t work on Android.

 The Spock Android extension (https://github.com/pieces029/android-spock)
not only fixes this problem but also allows you to inject Android objects (such as activ-
ities) in your Spock tests. Here’s an example taken from the extension website.

class MainActivitySpec extends Specification {

 @UseActivity(MainActivity)
 def activity

 def "test activity setup"() {
 expect:
 activity != null
 activity instanceof MainActivity
 }

 def "test layout"() {
 given:
 def button = activity.findViewById(R.id.main_button) as Button

 when:
 def buttonText = button.getText()

 then:
 buttonText == "Test"
 }
}

The code can be found in Maven Central and is easy to use in your own Java project.

B.10 Spock Gherkin extension
If you’re already familiar with BDD,2 you should have noticed by now that Spock isn’t a
full BDD tool, as it caters mostly to developers. To allow business analysts and testers to

Listing B.9 Using Spock with Android

2 Consult BDD in Action by John Ferguson Smart (Manning, 2014) for more information (www.manning.com/
books/bdd-in-action).

Injects an Android screen
that contains a button

ocates the
 button on
the screen

Verifies the text
of the button
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

https://bintray.com/bintray/jcenter
https://bintray.com/bintray/jcenter
https://github.com/pieces029/android-spock
www.manning.com/books/bdd-in-action
www.manning.com/books/bdd-in-action

271Spock support in Serenity
create Spock tests, it’s easier to use the Gherkin3 language (https://github.com/
cucumber/cucumber/wiki/Gherkin) as an intermediate format for describing what
needs to be tested.

 The Spock Pease extension (http://pease.github.io/) automatically converts Gher-
kin descriptions to Spock tests, making the cooperation between business analysts and
developers much easier. Here’s an example of Gherkin:

Feature: Addition
 Scenario: Add two numbers
 Given I have entered 50 into the calculator
 And I have entered 70 into the calculator
 When I press add
 Then the result should be 120 on the screen

This description can be converted automatically to the Spock test shown in the follow-
ing listing.

class Addition extends spock.lang.Specification {
 void "add two numbers"() {
 def calc = new Calculator()

 given: "I have entered 50 into the calculator"
 calc.push("50" as double)

 and: "I have entered 70 into the calculator"
 calc.push("70" as double)

 when: "I press add"
 calc.add()

 then: "the result should be 120 on the screen"
 calc.result == "120" as double
 }
}

Unfortunately, the project has been dormant since 2011, so it might need updating
for the Spock 1.0 release.

B.11 Spock support in Serenity
Serenity (https://github.com/serenity-bdd) is a BDD tool that, among other things,
provides a dashboard with test results. Unlike other reporting tools that focus on unit
tests, Serenity focuses on features, making the dashboard readable even to nontechni-
cal people (see figure B.3).

3 Used by cucumber (https://github.com/cucumber/cucumber-jvm).

Listing B.10 Generated Spock test from Gherkin
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

https://github.com/cucumber/cucumber-jvm
https://github.com/cucumber/cucumber/wiki/Gherkin
https://github.com/cucumber/cucumber/wiki/Gherkin
http://pease.github.io/
https://github.com/serenity-bdd

272 APPENDIX B External Spock extensions and related tools
The combination of Spock tests and Serenity is a perfect match, as Spock describes its
tests in full English text and complements Serenity well.

 Originally, Serenity supported JUnit, but Spock support was added as well. For
more information on Serenity, you should read BDD in Action by John Ferguson Smart
(Manning, 2014).

B.12 Spock support in Allure
Allure (http://allure.qatools.ru/) is another test dashboard for a different program-
ming language. It’s created by the testing team of Yandex.4 Allure isn’t constrained to
Java, but instead supports several test frameworks for PHP, C#, JavaScript, Python,
Ruby, and so on. Figure B.4 shows the Allure dashboard.

4 Yandex is the largest search engine in Russia (www.yandex.com).

Figure B.3 The Serenity dashboard
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

http://allure.qatools.ru/
www.yandex.com

273Spock support in Allure
Allure now contains support for Spock (https://github.com/allure-framework/
allure-spock-adaptor), so you can think of it as an additional reporting tool for your
Spock tests.

Figure B.4 Allure dashboard
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

https://github.com/allure-framework/allure-spock-adaptor
https://github.com/allure-framework/allure-spock-adaptor

274 APPENDIX B External Spock extensions and related tools

Licensed to Stephanie Bernal <nordicka.n@gmail.com>

index
Symbols

_ (underscore) 166, 180
-> character 55
; (semicolon) 35
*. (star-dot operator) 146
<< operator 145
== operator 44
>> (shift operator) 168
>>> operator 80, 167
| (pipe symbol) 133
|| notation 75

A

abstract syntax tree. See AST
acceptance tests 194
activate() method 247
@After annotation 111
@AfterClass annotation 111
agnostic testing of Java and Groovy 15–16
Allure 272–273
and: block 99, 103
Android extension 270
any() method 56
Apache Tapestry 5
arguments, method

dynamic stubs that check arguments 169–172
matching for stubbed methods 166–167
verifying for methods of mocked classes 182–

184
verifying for mocked methods 181–182

Arquillian 206, 265–266
Artifactory 254
assert phase 65
asserts vs. assertions 15

AST (abstract syntax tree) transformations 16
authorization event 184
@AutoCleanup annotation 234–235

B

BDD 5
@Before annotation 111
@BeforeClass annotation 111
book source code in 258, 261–262
Boolean values 42
browser automation 212–213
bugs, defined 4
builds, running tests as part of build process

code coverage 221–223
splitting unit, integration, and functional

tests 218–220

C

capturing event 184
casting 60
classes

controlling input using stubs
matching arguments for stubbed

methods 166–167
returning stubs from responses of other

stubs 172–173
sequential stubs with different responses for

each call 167–168
stubbing return values 163–166
throwing exceptions when calling stubbed

method 168–169
using dynamic stubs that check

arguments 169–172
275

Licensed to Stephanie Bernal <nordicka.n@gmail.com>

INDEX276
classes (continued)
verifying values returned using mocks

checking whether method was called 174–176
stub capabilities and mocks 174
verifying arguments of method calls 182–184
verifying noninteractions for multiple

mocked classes 179–180
verifying number of method calls 177–179
verifying order of interactions 176–177
verifying types of arguments for mocked

methods 181–182
cleanup: block 104–105
cleanup() method 110, 138
closures 55–56
code duplication 128
code reduction using 40–41
coding features 6, 8
collaboration 6
@Collaborator annotation 267
compile-time macros 16
concise code 27
@ContextConfiguration annotation 200–201
credit card processing example 184–187
Cucumber 15

D

Damage Control 264
data generators

creating custom 150–152
overview 148–150
third-party 155–156
using multivalued data iterators 152–155

data pipes
dynamically generated parameters 147
parameters that are constant 147
parameters that depend on other

parameters 147–148
data tables

limitations of 134–135
maintenance of 135–137
using expressions and statements in 143–144

data-driven tests 17
dbUnit extension 269–270
declaring in Groovy 38, 40
def keyword 20, 38–39
design features of Spock 5–6
documentation 262
DRY principle 109, 128
DSL (domain-specific language) 16, 244
dynamic programming languages 24, 33

E

e-shop example application 161–163
EasyMock 18
Eclipse 254, 256
endsWith() method 187
English-like flow of Spock 28, 30
enterprise tests 17

automatic cleanup of resources 234–235
failing tests on timeout 228–230
ignoring tests

@Ignore annotation 230–231
@IgnoreIf annotation 231–233
@IgnoreRest annotation 231
@Requires annotation 234

large tests
reusing assertions in then: block 239–242
reusing interactions in then: block 243–244
using helper methods to improve

readability 236–239
mapping tests to issue-tracking system 227–228
partial mocks using spies

overview 245–248
replacing spies with mock 248–250
showing problematic code base using 248

testing for exceptions 225–227
enterprise-ready test framework, Spock as 9–12
equals() method 44
every() method 55
exceptions, throwing when calling stubbed

method 168–169
Expando, creating test input with 58–61
expect: block 103–104

F

Failsafe plugin 219–220
fake collaborators

defined 157
e-shop example application 161–163
isolating class in unit tests 158–159
mocks and stubs 159–160
overview 158
when to use 160–161

fake objects in Spock 79–80
features

defined 109
setup and cleanup of 109–110

find() method 56
findAll() method 56
functional testing

of REST services
overview 207–208
using @Stepwise annotation 209–211
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

INDEX 277
using Groovy RESTClient 211–212
using Java libraries 208

of web applications
browser automation with Geb 212–213
example application 213
interacting with web page 216–218
using Geb with Spock 214–216

unit tests and integration tests vs.
overview 194–197
Spock support 198
testing pyramid 197–198

functional tests, defined 195

G

GDK (Groovy Development Kit) 32
Geb 5

browser automation with 212–213
using with Spock 214–216

Gherkin extension 270–271
GitHub 262
given-when-then flow 67–70
given: block 94–95
Gradle 25, 253
gradual adoption of Spock in projects 26–27
graphical user interface. See GUI
Groovy 251
Groovy Development Kit. See GDK
Groovy SQL 204–206
groovyc compiler 37
grouping test code 122, 126
GStrings 50
GUI (graphical user interface) 194
Guice support 206–207

H

Hamcrest matchers 119–122
hasItem() matcher 119

I

IDE (integrated development environment) 7
@Ignore annotation 230–231
@IgnoreIf annotation 231–233
@IgnoreRest annotation 231
inspecting failed tests 20, 23
installing Spock 251–254
integrated development environment. See IDE
integration testing

defined 194
Java EE and Guice support 206–207
Spring context and 202–204
testing Spring applications 199–202

unit tests and functional tests vs.
overview 194–197
Spock support 198
testing pyramid 197–198

using Groovy SQL 204–206
IntelliJ IDE 256–257
isEmpty() method 164
@Issue annotation 227–228

J

Java EE support 206–207
Java Virtual Machine. See JVM 16
JBehave 6
JCenter 270
JDK (Java Development Kit) 32
Jenkins 14, 218
jFairy data generator library 155
jMock 5, 18
join() method 146
JSON file, reading 53–54
JUnit 18–19

compatibility with 121
mocks and 158
setup-stimulate-assert flow of 65–67

JVM (Java Virtual Machine) 16

L

large tests
reusing interactions in then 243–244
using helper methods to improve

readability 236–239
left-shift operator 145
lenient vs. strict mocks 188–190
LinkedHashMap 48
lists 47, 50
long-lived objects, with @Shared annotation

112–113

M

mailing list 262
map-based constructors 46–47
maps 47, 50
marking class being tested 106–107
Maven 5, 252–253
Maven Failsafe 219
mocked objects interaction 83, 85
mocking 5, 17–18

architecture considerations
designing testable code 188
lenient vs. strict mocks 188–190

credit card processing example 184–187
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

INDEX278
mocking (continued)
fake collaborators

e-shop example application 161–163
isolating class in unit tests 158–159
mocks and stubs 159–160
overview 158
when to use 160–161

verifying values returned from classes
checking whether method was called 174–176
stub capabilities and mocks 174
verifying arguments of method calls 182–184
verifying noninteractions for multiple

mocked classes 179–180
verifying number of method calls 177–179
verifying order of interactions 176–177
verifying types of arguments for mocked

methods 181–182
without external library 27–28

Mockito 18, 76, 85
mocks

defined 76, 159
filmmaking analogy for 160
partial mocks using spies

overview 245–248
replacing spies with mock 248–250
showing problematic code base using 248

MongoDB 5
multivalued data iterators 152–155

N

@Narrative annotation 107
NetBeans 257
Nexus 254
not() matcher 120
notThrown() method 225–227

O

ObjectGraphBuilders, creating test input with
56–58

old() method 113–114
online() method 233
output parameters 80, 83

P

parameterized tests 71
data generators

creating custom 150–152
overview 148–150
third-party 155–156
using multivalued data iterators 152–155

data pipes
dynamically generated parameters 145–147

overview 144
parameters that are constant 147
parameters that depend on other

parameters 147–148
documenting 141–143
example of 130–131
overview 127–128
why needed 128–130

Phantom.js 215
pipe symbol (|) 133
PowerMock 18, 188, 266–267
println method 35

R

ranges, in Groovy 145
reading

JSON file 53–54
text file 51–52
XML file 52–53

recursive stubbing 172
@Requires annotation 234
REST services, functional testing of

overview 207–208
using @Stepwise annotation 209–211
using Groovy RESTClient 211–212
using Java libraries 208

Retry extension 268–269
return keyword 40
reusing

assertions in then: block 239–242
interactions in then: block 243–244

reusing interactions in then: block 243–244
right-shift operator 167
@Rollback annotation 201
RSpec 5, 15

S

self-documenting tests 116
Serenity 271–272
setup and cleanup

of features 109–110
of specifications 110–112

setup phase 65
setup-stimulate-assert flow of 65, 67
setup: block 95–96
setup() method 110, 138
@Shared annotation 112–113
shift operator 168
SOLID principles 248
spies, partial mocks using

overview 245–248
replacing spies with mock 248–250
showing problematic code base using 248
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

INDEX 279
Spock Collaborators extension 267–268
Spock Genesis 155, 265
Spock Reports 263
Spock versions 252
Spock Web Console 26
Spring applications

integration testing of 199–202
Spring context 202–204

Sputnik test runner 26
@Sql annotation 201
Stack Overflow 262
star-dot operator (*.) 146
status classes 64
@Stepwise annotation 209–211
stimulus phase 65
strict vs. lenient mocks 188–190
strings 50–51
stubbing

architecture considerations
designing testable code 188
lenient vs. strict mocks 188–190

controlling input to classes
matching arguments for stubbed

methods 166–167
returning stubs from responses of other

stubs 172–173
sequential stubs with different responses for

each call 167–168
stubbing return values 163–166
throwing exceptions when calling stubbed

method 168–169
using dynamic stubs that check

arguments 169–172
credit card processing example 184–187
fake collaborators

e-shop example application 161–163
isolating class in unit tests 158–159
mocks and stubs 159–160
overview 158
when to use 160–161

recursive 172
stubs

defined 76, 79, 159
filmmaking analogy for 160

@Subject annotation 106–109
Surefire plugin 220

T

tabular data input with Spock 74, 76
test doubles 157
TestNG 8, 23, 74
text file, reading 51–52
then: block 98–99, 177–178

reusing assertions in 239–242
reusing interactions in 243–244

thrown() method 225–227
@Timeout annotation 228–230
@Title annotation 107
toString() method 118–119
@Transactional annotation 201
true/false statements 41, 43

U

underscore (_) 166, 180
unit tests

defined 194
duplicating vs. refactoring 128
integration tests and functional tests vs.

overview 194–197
Spock support 198
testing pyramid 197–198

@Unroll annotation 141
unsigned right-shift operator 167
unsigned shift operator 80

V

visibility modifiers 34

W

web applications, functional testing of
browser automation with Geb 212–213
example application 213
interacting with web page 216–218
using Geb with Spock 214–216

when: block 96–98, 100
where: block 105

@Unroll annotation 141
lifecycle of 137–139
limitations of data tables 134–135
maintenance of data tables 135–137
overview 131, 133
using data tables in 133–134
using expressions and statements in data

tables 143–144
with() method 125, 187, 235
writing specifications 107–108

X

XML file, reading 52–53
XML, reading external dataset from 52–54
XmlSlurper 52
Licensed to Stephanie Bernal <nordicka.n@gmail.com>

RELATED MANNING TITLES
Gradle in Action
by Benjamin Muschko

ISBN: 9781617291302
480 pages, $44.99
February 2014

Java 8 in Action
Lambdas, streams, and functional-style
programming
by Raoul-Gabriel Urma, Mario Fusco,

and Alan Mycroft

ISBN: 9781617291999
424 pages, $49.99
August 2014

The Art of Unit Testing, Second Edition
with examples in C#
by Roy Osherove

ISBN: 9781617290893
296 pages, $44.99
November 2013

Groovy in Action, Second Edition
by Dierk König, Paul King, Guillaume

Laforge, Hamlet D'Arcy, Cédric
Champeau, Erik Pragt, and Jon Skeet

ISBN: 9781935182443
912 pages, $59.99
June 2015
For ordering information go to www.manning.com

Licensed to Stephanie Bernal <nordicka.n@gmail.com>

https://www.manning.com/books/groovy-in-action-second-edition
https://www.manning.com/books/the-art-of-unit-testing-second-edition
https://www.manning.com/books/java-8-in-action
https://www.manning.com/books/gradle-in-action
https://www.manning.com/books/groovy-in-action-second-edition
https://www.manning.com/books/the-art-of-unit-testing-second-edition
https://www.manning.com/books/java-8-in-action
https://www.manning.com/books/gradle-in-action

Konstantinos Kapelonis

S
pock combines the features of tools like JUnit, Mockito,
and JBehave into a single powerful Java testing library.
With Spock, you use Groovy to write more readable and

concise tests. Spock enables seamless integration testing, and
with the intuitive Geb library, you can even handle functional
testing of web applications.

Java Testing with Spock teaches you how to use Spock for a
wide range of testing use cases in Java. You’ll start with a quick
overview of Spock and work through writing unit tests using
the Groovy language. You’ll discover best practices for test de-
sign as you learn to write mocks, implement integration tests,
use Spock’s built-in BDD testing tools, and do functional web
testing using Geb. Readers new to Groovy will appreciate
the succinct language tutorial in chapter 2 that gives you just
enough Groovy to use Spock effectively.

What’s Inside
● Testing with Spock from the ground up
● Write mocks without an external library
● BDD tests your business analyst can read
● Just enough Groovy to use Spock

Written for Java developers. Knowledge of Groovy and JUnit
is helpful but not required.

Konstantinos Kapelonis is a software engineer who works with
Java daily.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/books/java-testing-with-spock

$44.99 / Can $51.99 [INCLUDING eBOOK]

JAVA TESTING WITH SPOCK

JAVA

M A N N I N G

“Goes beyond mere
exploration of Spock’s API
and feature set to include

general testing practices and
real-world application.”

—From the Foreword by
Luke Daley

Spock founding contributor

“An awesome guide to one
of the most useful test

 frameworks for Java.”
—Christopher W. H. Davis, Nike

“Discover the power of Spock
and Groovy, step-by-step.”

—David Pardo, Amaron

“Does an excellent job of
exploring features of Spock

that are seldom, if ever,
mentioned in other online
resources. If you care about

producing quality tests, then
this book is for you!”—Annyce Davis

The Washington Post

SEE INSERT

	Java Testing with Spock
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	Roadmap
	Code conventions and downloads
	Author online
	About the author

	about the cover illustration
	Part 1 Foundations and brief tour of Spock
	1 Introducing the Spock testing framework
	1.1 What is Spock?
	1.1.1 Mocking and stubbing
	1.1.2 Behavior-driven development
	1.1.3 Spock’s design features
	1.1.4 Spock’s coding features

	1.2 The need for a testing framework
	1.2.1 Spock as an enterprise-ready test framework
	1.2.2 Common ways to handle enterprise complexity

	1.3 Spock: the groovier testing framework
	1.3.1 Asserts vs. Assertions
	1.3.2 Agnostic testing of Java and Groovy
	1.3.3 Taking advantage of Groovy tricks in Spock tests

	1.4 Getting an overview of Spock’s main features
	1.4.1 Enterprise testing
	1.4.2 Data-driven tests
	1.4.3 Mocking and stubbing

	1.5 A first look at Spock in action
	1.5.1 A simple test with JUnit
	1.5.2 A simple test with Spock
	1.5.3 Inspecting failed tests with Spock

	1.6 Spock’s position in the Java ecosystem
	1.6.1 Making Spock Groovy
	1.6.2 Adding Spock tests to existing projects that have JUnit tests
	1.6.3 Spock adoption path in a Java project

	1.7 Comparing Spock and JUnit
	1.7.1 Writing concise code with Groovy syntax
	1.7.2 Mocking and stubbing with no external library
	1.7.3 Using English sentences in Spock tests and reports

	1.8 Summary

	2 Groovy knowledge for Spock testing
	2.1 What you need to know about Groovy
	2.1.1 Groovy as a companion to Java
	2.1.2 Accessing Java classes in a Groovy script
	2.1.3 Declaring variables and methods in Groovy
	2.1.4 Writing less code with Groovy

	2.2 Groovy Power assert as a replacement for JUnit asserts
	2.2.1 Understanding how Groovy handles asserts
	2.2.2 Using Groovy assertions in Spock tests

	2.3 Groovy features useful to Spock tests
	2.3.1 Using map-based constructors
	2.3.2 Using maps and lists in Groovy
	2.3.3 Interpolating text with Groovy strings

	2.4 Reading a test dataset from an external source
	2.4.1 Reading a text file
	2.4.2 Reading an XML file
	2.4.3 Reading a JSON file

	2.5 Advanced Groovy features useful to testing
	2.5.1 Using Groovy closures
	2.5.2 Creating test input with ObjectGraphBuilders
	2.5.3 Creating test input with Expando

	2.6 Summary

	3 A tour of Spock functionality
	3.1 Introducing the behavior-testing paradigm
	3.1.1 The setup-stimulate-assert structure of JUnit
	3.1.2 The given-when-then flow of Spock

	3.2 Handling tests with multiple input sets
	3.2.1 Existing approaches to multiple test-input parameters
	3.2.2 Tabular data input with Spock

	3.3 Isolating the class under test
	3.3.1 The case of mocking/stubbing
	3.3.2 Stubbing fake objects with Spock
	3.3.3 Mocking collaborators
	3.3.4 Examining interactions of mocked objects
	3.3.5 Combining mocks and stubs in parameterized tests

	3.4 Summary

	Part 2 Structuring Spock tests
	4 Writing unit tests with Spock
	4.1 Understanding Spock from the ground up
	4.1.1 A simple test scenario
	4.1.2 The given: block
	4.1.3 The setup: block
	4.1.4 The when: block
	4.1.5 The then: block
	4.1.6 The and: block
	4.1.7 The expect: block
	4.1.8 The cleanup: block

	4.2 Converting requirements to Spock tests
	4.2.1 Explaining the feature examined in a Spock test
	4.2.2 Marking the class under test inside a Spock test
	4.2.3 Describing the Spock unit test as a whole
	4.2.4 Revising our view of a Spock test

	4.3 Exploring the lifecycle of a Spock test
	4.3.1 Setup and cleanup of a feature
	4.3.2 Setup and cleanup of a specification
	4.3.3 Long-lived objects with the @Shared annotation
	4.3.4 Use of the old() method

	4.4 Writing readable Spock tests
	4.4.1 Structuring Spock tests
	4.4.2 Ensuring that Spock tests are self-documenting
	4.4.3 Modifying failure output
	4.4.4 Using Hamcrest matchers
	4.4.5 Grouping test code further

	4.5 Summary

	5 Parameterized tests
	5.1 Detecting the need for parameterized tests
	5.1.1 What are parameterized tests?

	5.2 Using the where: block
	5.2.1 Using data tables in the where: block
	5.2.2 Understanding limitations of data tables
	5.2.3 Performing easy maintenance of data tables
	5.2.4 Exploring the lifecycle of the where: block
	5.2.5 Using the @Unroll annotation for reporting individual test runs
	5.2.6 Documenting parameterized tests
	5.2.7 Using expressions and statements in data tables

	5.3 Using data pipes for calculating input/output parameters
	5.3.1 Dynamically generated parameters
	5.3.2 Parameters that stay constant
	5.3.3 Parameters that depend on other parameters

	5.4 Using dedicated data generators
	5.4.1 Writing a custom data generator
	5.4.2 Using multivalued data iterators

	5.5 Working with third-party data generators
	5.6 Summary

	6 Mocking and stubbing
	6.1 Using fake collaborators
	6.1.1 Using fake collaborators to isolate a class in unit tests
	6.1.2 Faking classes in Spock: mocks and stubs
	6.1.3 Knowing when to use mocks and stubs
	6.1.4 Exploring a sample application for an electronic shop system

	6.2 Controlling input to the class under test with stubs
	6.2.1 Basic stubbing of return values
	6.2.2 Matching arguments leniently when a stubbed method is called
	6.2.3 Using sequential stubs with different responses for each method call
	6.2.4 Throwing exceptions when a stubbed method is called
	6.2.5 Using dynamic stubs that check arguments when responding
	6.2.6 Returning stubs from the responses of other stubs

	6.3 Mocks: verifying values returned from the class under test
	6.3.1 All capabilities of stubs exist in mocks as well
	6.3.2 Simple mocking—examining whether a method was called
	6.3.3 Verifying order of interactions
	6.3.4 Verifying number of method calls of the mocked class
	6.3.5 Verifying noninteractions for multiple mocked classes
	6.3.6 Verifying types of arguments when a mocked method is called
	6.3.7 Verifying arguments of method calls from mocked classes

	6.4 Putting it all together: credit card charging in two steps
	6.5 Architecture considerations for effective mocking/stubbing
	6.5.1 Designing testable code that allows painless mocking
	6.5.2 Understanding lenient vs. strict mocks

	6.6 Summary

	Structuring Spock tests

	Part 3 Spock in the Enterprise
	7 Integration and functional testing with Spock
	7.1 Unit tests vs. integration tests vs. functional tests
	7.1.1 Characteristics of the test categories
	7.1.2 The testing pyramid
	7.1.3 Spock support for integration and functional testing
	7.1.4 Source code organization of the examples

	7.2 Integration testing with Spock
	7.2.1 Testing a Spring application
	7.2.2 Narrowing down the Spring context inside Spock tests
	7.2.3 Directly accessing the database with Groovy SQL
	7.2.4 Integration testing with other containers (Java EE and Guice)

	7.3 Functional testing of REST services with Spock
	7.3.1 Working with a simple REST service
	7.3.2 Testing REST services by using Java libraries
	7.3.3 Using the @Stepwise annotation to run tests in order
	7.3.4 Testing REST services using Groovy RESTClient

	7.4 Functional testing of web applications with Spock
	7.4.1 Browser automation with Geb
	7.4.2 The example web application
	7.4.3 Spock and Geb: a match made in heaven
	7.4.4 Using Geb to interact with a web page

	7.5 Running Spock tests as part of a build process
	7.5.1 Splitting unit, integration, and functional tests
	7.5.2 Getting code coverage from Spock tests

	7.6 Summary

	8 Spock features for enterprise testing
	8.1 Using additional Spock features for enterprise tests
	8.1.1 Testing the (non)existence of exceptions: thrown() and notThrown()
	8.1.2 Mapping Spock tests to your issue-tracking system: @Issue
	8.1.3 Failing tests that don’t finish on time: @Timeout
	8.1.4 Ignoring certain Spock tests
	8.1.5 Automatic cleaning of resources: @AutoCleanup

	8.2 Handling large Spock tests
	8.2.1 Using helper methods to improve code readability
	8.2.2 Reusing assertions in the then: block
	8.2.3 Reusing interactions in the then: block

	8.3 Creating partial mocks with spies
	8.3.1 A sample application with special requirements
	8.3.2 Spies with Spock
	8.3.3 The need for spies shows a problematic code base
	8.3.4 Replacement of spies with mock

	8.4 Summary

	appendix A Installing Spock
	A.1 Optional Groovy installation
	A.2 Choosing a Spock version
	A.3 Master example for Maven, Ant, and Gradle
	A.3.1 Spock with Maven
	A.3.2 Spock with Gradle
	A.3.3 Spock in an enterprise environment

	A.4 Spock tests in your IDE
	A.4.1 Spock in Eclipse
	A.4.2 Spock in the IntelliJ IDE
	A.4.3 Spock in NetBeans

	A.5 How to use the source code of this book
	A.6 How to use the chapter code in Eclipse
	A.7 How to use the chapter code in IntelliJ IDEA
	A.8 Other resources

	appendix B External Spock extensions and related tools
	B.1 Detailed Spock reporting
	B.2 Gradle-style Spock reports
	B.3 Spock Genesis
	B.4 Spock-Arquillian test runner
	B.5 Using PowerMock with Spock
	B.6 Spock InjectMocks extension
	B.7 Spock Retry extension
	B.8 Spock dbUnit extension
	B.9 Spock Android extension
	B.10 Spock Gherkin extension
	B.11 Spock support in Serenity
	B.12 Spock support in Allure

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

	Java Testing with Spock-back

